
Conjugate Paretian Inefficiency Measurement

Robert G. Chambers 1

May 6, 2024

1University of Maryland



1 Introduction

Since their inceptions, operations research and economics have studied efficiency. Debreu

(1951) early elaborated an analytical framework, and a series of subsequent studies developed

tractable measurement algorithms (Farrell 1957, Nerlove 1965, Afriat 1972, Hanoch and

Rothschild 1972, Charnes, Cooper, and Rhodes 1978, Färe and Lovell 1978, Banker, Charnes,

and Cooper 1984). Charnes et al. (1978) marked an important watershed. It showed

that the Farrell-Afriat measurement schemes generalized to multiple-output settings solvable

via linear programming, and its generalization by Banker et al. (1984) established data-

envelopment analysis (DEA) as a canonical measurement framework.

Measuring efficiency requires a benchmark efficient set or efficient frontier. Here, ef-

ficiency measurement melds with multiple-criteria (vector) optimization studies that seek

to optimize vector-valued criterion functions. With intellectual roots tracing to Edgeworth

(1881) and Pareto (1909), multiple-criteria problems often invoke the Paretian criteria to

identify an efficient set with the maximal set for a subset of the partially ordered set
(
RS,≤

)
,

where ≤ is the canonical less than or equal to partial ordering (Ehrgott 2005, Löhne 2011).

DEA studies often define their benchmark efficient set using the same definition, as articu-

lated formally in Banker et al.’s (1984) Inefficiency Postulate (Banker et al. 1984, Charnes,

Cooper, Golany, Seiford, and Stutz 1985, Ray 2004, Pastor, Lovell, and Aparicio 2012, Rus-

sell and Schworm 2009 and 2017).

Debreu (1951, p. 273) cast efficiency measurement as measuring how far a nonoptimal

situation “...is from being optimal”. Later Afriat (1972, p. 576) suggested representing

“...operations as nearly efficient as possible”. A large literature adopts this perspective and

seeks measures that judge outcomes as favorably as possible. Here, efficiency measurement

melds with the study of minimum-distance problems. The Minimum Norm Duality Theorem

(Nirenberg 1961, Luenberger 1969, Theorem 5.13.1) states that the minimal distance, for a

given norm, between a point and a convex set’s boundary is the maximal distance between

the point and the set’s support function with dual variates restricted to the dual-norm’s

unit disc. Rather than restricting dual variates to the unit disc, inefficiency measurement

requires them to fall, variously, on a hyperplane, in a closed half space, or in the intersection
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of closed half spaces (for example, Debreu 1951, Charnes et al. 1978, Luenberger 1992, Ray

2007, Pastor et al. 2012).

We study efficiency measurement for a closed convex feasible set that generalizes the

canonical DEA frameworks. We identify its Paretian (efficient) frontier with the maximal

set for a subset of the partially ordered set
(
RS,�C

)
, where �C denotes a generalized in-

equality that partially orders RS and generalizes the canonical ≤ partial ordering. We seek

measures that judge outcomes as favorably as possible and combine the normalization strate-

gies pursued in the efficiency-measurement and minimum-norm literatures under a common

rubric by restricting dual variates to a nonempty closed convex set. These generalizations

yield an inefficiency measure defined as the conjugate (Legendre-Fenchel transform) of a

closed convex function of dual variates.

In what follows, we first define notation and recall some concepts from convex analysis.

Then we set up the model and use vector-optimization theory results (Löhne 2011) to define

an efficient frontier using �C and to characterize it using dual methods (Proposition 1).

Following Debreu (1951) and Nerlove (1965), we identify a Nerlovian inefficiency measure

and use it to define a Paretian inefficiency measure as the solution to a convex programming

problem. We show that the Paretian inefficiency measure forms a dual conjugate pair with a

restricted Nerlovian efficiency measure (Proposition 2). Then we use the conjugacy between

the infimal-convolution and addition operations to show that the dual conjugacy general-

izes the Nirnberg minimum-norm-minimal-distance duality. We use those results to develop:

conditions that ensure that the Paretian inefficiency measure is an exhaustive function (car-

dinal) representation of the feasible set (Proposition 3); and composition rules for different

restrictions on the feasible set and dual-variate normalization (Proposition 4). Special cases

include generalizations of many inefficiency measures familiar from a DEA setting.

We examine the decomposition of measured Nerlovian inefficiency into a technical-inefficiency

component and a dual-inefficiency (allocative, price) component. We show that the dual-

inefficiency measure is a closed convex bi-function in the sense of Rockafellar (1970, Section

29). We discuss the dual inefficiency measure, show its relevance for recent concerns raised

about Nerlovian inefficiency decompositions, and show that it satisfies two dual conjugacies:

a) one to a difference-based transformation of our Paretian inefficiency measure (Proposition

2



5); and b) one to a difference-based transformation of Nerlovian inefficiency (Proposition 6).

Although we frame the analysis in more general terms than the polyhedral DEA set-

ting, our results echo its familiar message that different choice criteria and different dual-

normalization rules yield different efficiency measures. For example, Banker et al. (1984)

derive input-oriented and output-oriented inefficiency measures by choosing different nor-

malization criteria. Chambers, Chung, and Färe (1998) showed that the dual-variate nor-

malization strategy of Luenberger (1992) yields inefficiency measures expressed in difference

rather than ratio form. Thus, taxonomies often classify measures according to the functional

structure (additive or multiplicative loss measure) of the criterion function or the orientation

in which the outcome is compared to the benchmark set (slacks-based or path-based). Our

results show that many of these different forms can be gathered under a common rubric that

clarifies the essential mathematical issues yielding perceived differences. And because our

results are established in a more general setting than DEA, it broadens the range of avail-

able measures while also showing that DEA-specific results established have implications for

broader classes of measurement problems.

2 Notation and Preliminaries

Let R̄ = [−∞,∞]. The effective domain for f : RS → R̄, dom f , is

dom f ≡
{
x ∈ RS : f (x) <∞

}
,

and its subdifferential correspondence, ∂f : RS ⇒ RS∗, is1

∂f (x) ≡
{
q ∈ RS∗ : q′ (z − x) ≤ f (z)− f (x) , ∀z ∈ RS

}
.

The (convex) conjugate for f , f ∗ : RS∗ → R̄, is2

(1) f ∗ (q) ≡ sup
x∈RS

{q′x− f (x)}

1RS is, of course, self-dual. We retain the notation, RS∗, for its dual space to ensure a clear distinction

between dual and primal variates.
2Moreau (1966) calls f∗ la fonction polaire to f . Some writers call it the Fenchel transform. Rockafellar

and Wets (2009) call it the Legendre-Fenchel transform.
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f ∗ is closed3 and convex. For f proper4 closed and convex :

f ∗∗ (x) ≡ sup
q∈RS∗

{q′x− f ∗ (q)}

= f (x) ,(2)

and f ∗ is also proper. Expressions (1) and (2) form the conjugacy correspondence, f
∗←→ f ∗,

between proper closed convex f and its conjugate f ∗. A well-known consequence is (see, for

example, Rockafellar 1970, Moreau 1966, Rockafellar and Wets 2009, Aubin and Ekeland

2007, Bertsekas 2009)

Lemma 1. Let f be proper closed convex. Then f ∗ is proper closed convex,

(3) f (x) + f ∗ (q) ≥ q′x ∀q, x (Fenchel’s Inequality)

(4) q̂ ∈ ∂f (x̂)⇔ x̂ ∈ ∂f ∗ (q̂)⇔ f (x̂) + f ∗ (q̂) = q̂′x̂,

(5) ∂f ∗ (q) = argmaxx {q′x− f (x)} ∂f (x) = argmaxq {q′x− f ∗ (q)} .

Let ri X denote the relative interior of X ⊂ RS. Define the indicator function, δ : RS →

{0,∞} , for X ⊂ RS by

(6) δ (x|X) =

0 if x ∈ X

∞ otherwise.

For X ⊂ RS closed convex and nonempty, δ (x|X) is proper closed and convex. The support

function, δ∗ : RS∗ → R̄, for X is

δ∗ (q|X) ≡ sup {q′x : x ∈ X}

= sup
x∈RS

{q′x− δ (x|X)} .(7)

δ∗, as the conjugate of δ, is closed and sublinear. If X is closed nonempty and convex,

expression (2) implies δ∗ is proper and

δ (x|X) = sup
q∈RS∗

{q′x− δ∗ (q|X)}(8)

3A function is closed if its closure is the function itself. For proper convex functions, closedness is

equivalent to lower semi-continuity (Rockafellar 1970, p. 52).
4A convex function f is proper if dom f is nonempty and f (x) > −∞ for all x.
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The gauge function for X ⊂ RS, γ : RS → R̄, is defined

(9) γ (x|X) = inf {γ > 0 : x ∈ γX} .

If X is nonempty closed convex and 0 ∈ X,

X = {x : γ (x|X) ≤ 1} .

The negative polar cone5 of a convex set X ⊂ RS is

X∗ ≡
{
q ∈ RS∗ : q′x ≤ 0,∀x ∈ X

}
.

For X a closed convex nonempty cone X∗∗ = X. The polar set of X ⊂ RS is

Xo ≡
{
q ∈ RS∗ : q′x ≤ 1,∀x ∈ X

}
.

The recession (asymptotic) cone of X ⊂ RS is

X∞ ≡
{
d ∈ RS : X + βd ⊂ X, β ≥ 0

}
.

0 ∈ X∞ for all X ⊂ RS. For X closed convex and nonempty :

cl dom δ∗ (·|X) = X∗∞(10)

(cl dom δ∗ (·|X))∗ = X∞

(Hiriart-Urruty and LeMaréchal 2001, Proposition C.2.2.4). And for X closed convex with

0 ∈ X:

X∞ =
{
x ∈ RS : γ (x|X) = 0

}
(Hiriart-Urruty and LeMaréchal 2001, Theorem C.1.2.5).

A useful separation result is:

Lemma 2. (Rockafellar 1970) Let X1 and X2 be nonempty convex subsets of RS that satisfy

ri X1 ∩ ri X2 = ∅, then there exists q ∈ RS∗ such that

inf
{
q′x : x ∈ X1

}
≥ δ∗

(
q|X2

)
δ∗
(
q|X1

)
> inf

{
q′x : x ∈ X2

}
.

5Some authors refer to X∗ as the polar cone of X.
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Efficient Outcomes

The Feasible Set

Feasible outcomes are given by a closed nonempty convex Z ⊂ RS. Z admits different

interpretations including, among others: an input set, an output set, a technology set,

a state-contingent technology set, and a (convex) envelope of observed data points. For

purposes of a concrete discussion we refer to Z as the technology. Elements of Z are netputs.

Working with netputs differs from studies that segregate inputs from outputs. The

notational difference promotes simplicity and generality and accommodates the presence of

intermediate outputs in the technology. It also avoids the practical difficulties encountered

in applications in segregating inputs from outputs when one decisionmaker is a net producer

of, say, “corn and hogs” and another facing the same Z is a net user of “corn” and produces

only “ hogs”.

The Efficient Set

Inefficiency-measurement and vector-optimization studies often use the canonical ≤ partial

ordering of RS (for example, Banker et al. 1984, Charnes et al. 1985, Ehrgott 2005, Ray

2004, Pastor et al. 2012, Russell and Schworm 2009 and 2017) and the Paretian criterion to

identify the efficient frontier (see, for example, Banker et al.’s (1984, p. 1081) Inefficiency

Postulate). That choice limits applicability of the resulting measures and conflicts with

physical reality in many applied settings. For example, it rules out bounded Z including

the Charnes et al. (1985) empirical production set (their expression 3.1), well-documented

instances of input or output congestion, the presence of by-products, and can create material-

balance specifications that contradict the first law of thermodynamics.

We use instead the more general binary relation, �C , defined by

x �C y ⇔ x− y ∈ C,

where C ⊂ RS is a closed pointed convex cone. �C is reflexive, transitive, and antisymmetric

so that
(
RS,�C

)
forms a partially ordered set (Boyd and Vandenberghe 2004, Nemirovski

2007, Löhne 2011).
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To relate this partial ordering to Z, we posit an axiom:

Axiom 1. Z∞ = C (where C ⊂ RS defines �C).

When Z is interpreted as a technology set, its recession cone, Z∞, describes the directions

in which starting at a feasible netput in Z, one can move toward infinity while maintaining

feasibility. Thus, it accords with the production-theoretic notion of netput-disposability.

Example 1. Let C = RS
−. Then Z satisfies the canonical Banker et al. (1984) Inefficiency

Postulate (free disposability of netputs).

Example 2. Let C = {0}. Then Z is compact. Special cases include the (compact) weak-

disposable, convex hull technologies and the empirical production set of Charnes et al. (1985).

Example 3. Let C = {d} where d ∈ RS. Then Z satisfies the “goodness in the numeraire

(d)” in the direction d criterion (Chambers and Färe 2022).

Using Axiom 1 and the Paretian criterion, we define the efficient set as:6

Definition 1. The efficient subset, EffZ, of (Z,�C) is

EffZ ≡ {zo ∈ Z : @z ∈ Z for which zo �C z ∧ z 6= zo} .

Because Z is closed convex, δ∗ (q|Z) is closed sublinear. Thus, Axiom 1 and (10) imply

that dom δ∗ (·|Z) = C∗. We use that observation to state a result that extends those for dual

representations of efficient sets for the canonical ≤ partial ordering (for example, Charnes

et al. 1985, Ehrgott 2005, Theorem 3.6 and Corollary 3.7) to �C :7

Proposition 1. a) ∂δ∗ (q|Z) ⊂ EffZ for all q ∈ ri C∗. b) zo ∈ EffZ ⇒ zo ∈ ∂δ∗ (q|Z)

for some q ∈ ri C∗.

Proof: See Appendix.

6Alternatively, zo is efficient if and only if no z ∈ Z exists for which zo − z ∈ C\ {0}.
7Proposition 1 can be inferred, for example, from Theorems 4.1 and 4.2 in Löhne (2011). We present a

direct proof, which follows standard arguments, in an Appendix to ensure a self-contained treatment. Note

the obvious connection to the First and Second Welfare Theorems of Economics.
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Remark 1. Proposition 1.a remains true for general closed Z, but part b) requires convexity.

A geometric interpretation of Proposition 1 is that EffZ corresponds to the set of faces of

Z exposed by q ∈ ri C∗.

In an economic setting where competitive firms maximize profit, the connection between

∂δ∗ (q|Z), as the profit-maximizing netput vectors, and Eff Z is familiar. In a broader

context, the connection between ∂δ∗ (q|Z) and Eff Z helps explain the primacy of linear

scalarization techniques in solving vector-optimization problems (Ehrgott 2005, Löhne 2011).

Inefficiency Measures

Measures Defined

We call

q′z − δ∗ (q|Z) = δ∗ (q|z − Z)

the q-Nerlove efficiency measure for z. When the dual variates, q ∈ RS∗, are prices or shadow

prices, δ∗ (q|z − Z) measures excess cost, foregone revenue, or foregone profit and is (minus)

Nerlove’s (1965) efficiency measure.8 Because RS∗ is the space of linear functionals on RS,

δ∗ (q|z − Z) measures the distance between the hyperplanes with normals q that, respectively,

include z and that support Z. Regardless of interpretation, δ∗ (·|z − Z)
∗←→ δ (·|z − Z). The

Nerlove efficiency measure, as the support function for a translated convex set z−Z, is dual

to δ (z|z − Z).

By definition, δ∗ (q|z − Z) ≤ 0 for all z ∈ Z. We say that z ∈ Z is q-Nerlove inefficient

when δ∗ (q|z − Z) < 0. Because (Z,�C) is a partially ordered set, one can encounter situ-

ations where a given z is q̂-Nerlove inefficient but not qo-Nerlove inefficient for q̂ 6= qo. To

accommodate such outcomes, we have

Definition 2. z ∈ Z is Pareto inefficient if and only if δ∗ (q|z − Z) < 0 for all q ∈ ri C∗.

If z ∈ Z is Pareto inefficient, then

q′z < δ∗ (q|Z)

8Debreu (1951) uses the term ‘dead loss’.

8



for all q with δ∗ (q|Z) + δ∗ (−q|Z) > 0. Thus, Paretian inefficiency requires that z ∈ ri Z

(for example, Hiriart-Urruty and LeMaréchal 2001, Theorem C.2.2.3).

Dual methods, therefore, can distinguish between inefficient points lying inside Z and its

efficient boundary points. A well-known stumbling block to designing a dual programming

algorithm to measure inefficiency is that dual variates, q, are determined only up to multi-

plication by a positive scalar. Hence, as the conjugacy between the support and indicator

functions exemplifies, optimization in dual space can yield unboundedly large solutions that

manifest themselves as infeasibilities in computational settings.

Traditional solutions in the inefficiency-measurement literature include restricting q to the

level set for a linear function of q or to its associated closed half space. Debreu (1951, p.284)

suggests “... dividing by a price index” and chooses the dual value of z as the numeraire.

Charnes et al. (1978) require that a subvector of z, which they term inputs, have a dual

value of 1. Luenberger (1992) requires that the dual value of a predetermined element of RS

be at least 1 ensuring that the numeraire bundle remains constant. Ray (2007) extended the

Luenberger approach by requiring that the dual value of two subvectors of z corresponding

to the inputs and outputs, respectively, at least equal 1. Pastor et al. (2012) generalize Ray

(2007) by treating the case of an arbitrary number of linear inequalities.

The Minimum Norm Duality Theorem (Nirenberg 1961, Luenberger 1969, Theorem

5.13.1), albeit implicitly, defines another approach to normalizing q. It shows that the

minimal distance between a point and the boundary of a convex set for a given norm is

the maximal difference between the hyperplane through that point and the set’s support

function with dual variates restricted to fall within the unit disc defined by the dual norm.

We incorporate the inefficiency-measurement literature approaches and the minimum-

norm approach under a common rubric and require that q belong to a closed convex nonempty

Q ⊂ RS∗. Our measure of Pareto Inefficiency, δQ : RS → R̄, is defined relative to Q as:

δQ (z|Z) ≡ sup {q′z − δ∗ (q|Z) : q ∈ Q}(11)

= sup
q∈RS∗

{q′z − δ∗ (q|Z)− δ (q|Q)} .

δQ (z|Z) isolates the element(s) of Q for which the normalized q-Nerlove inefficiency is “...as

nearly efficient as possible” (Afriat 1972). The superscript notation reminds us that δQ also
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has an interpretation as a “restricted” indicator function.

We choose (11) as the criterion function because of its longstanding importance in in-

efficiency measurement, its connection to minimum-norm problems, and its mathematical

links to the conjugacy correspondence δ∗
∗←→ δ (for example, Debreu 1951, Nirenberg 1961,

Luenberger 1969, Afriat 1972, Charnes et al. 1978, Ray 2004, 2007, Pastor et al. 2012,

among others). Nevertheless, other writers use different criteria to induce inefficiency mea-

sures that include some of the measures induced below. For example, some impose stronger

domain restrictions than ours and seek measures that maximize, for example, the ratio of

revenue to cost, the ratio of realized revenue to maximal revenue, and the ratio of minimal

cost to realized cost.9 Others use prespecified notions of similarity or closeness (for exam-

ple, Pastor, Ruiz, and Sirvent 2007). Färe, He, Li, and Zelenyuk (2019) study an approach

to inefficiency measurement that relies on choosing netputs and choice variates λ ∈ RN

and θ ∈ RM to maximize a generic objective function f (λ; θ) for fixed prices subject to

profitability constraints.10

A Conjugacy Result

Lemma 1 and (11) give:

Proposition 2. δQ : RS → R̄ is proper closed convex. Moreover,

(12) δQ (z|Z)
∗←→ δ∗ (q|Z) + δ (q|Q)

(13) δQ (z|Z) + δ∗ (q|Z) + δ (q|Q) ≥ q′z ∀q, z

(14) q̂ ∈ ∂δQ (ẑ|Z)⇔ ẑ ∈ ∂δ∗ (q̂|Z) + ∂δ (q̂|Q)⇔ δQ (ẑ|Z) + δ∗ (q̂|Z) + δ (q̂|Q) = q̂′ẑ,

By construction, δQ (z|Z) is the conjugate of δ∗ (q|Z)+δ (q|Q) ensuring that it is a closed

convex function of z. On the other hand, δ∗ (q|Z) + δ(q|Q) is proper closed convex which

9Note that it is routine in such settings to follow Charnes et al. (1978) and Tone (2001) and convert

the resulting fractional programs into linear programs by setting the denominator of the fractional objective

function to one. Such normalizations are special cases of Q.
10Färe et al. (2019) focus their attention on the case where N=1 and M=1.
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with Lemma 1 establishes that δQ is proper and that δ∗ (q|Z) + δ (q|Q)
∗←→ δQ (z|Z). The

remainder of the proposition also follows from Lemma 1.

Proposition 2 establishes a conjugacy correspondence between a mapping, δQ, defined

on RS and one defined on its dual space RS∗ that provides a description for how the choice

of Q affects δQ. Following Debreu (1951), Charnes et al. (1978), Ray (2007), and others

we have cast inefficiency measurement as a problem of choosing dual variates, q ∈ Q. But

just as primal and dual algorithms exist for linear programs, we can reformulate (11) as

optimizing over RS. The well-known conjugacy between the operations of addition and

infimal convolution gives

δQ (z|Z) = (δ∗ (q|Z) + δ (q|Q))∗ (z)

= inf
z=zo+d

{δ (zo|Z) + δ∗ (d|Q)}

= inf
d∈RS
{δ∗ (d|Q) : z − d ∈ Z}(15)

where inf
z=zo+d

{δ (zo|Z) + δ∗ (d|Q)} defines the infimal convolution of δ and δ∗ (for example,

Rockafellar 1970 Theorem 16.4, Hiriart-Urruty 2001 Theorem E.3.2.1).11

Constructing the ineffficiency measure, thus, reduces to locating the “minimal transla-

tion” of z that maintains it as an element of Z, where the degree of minimality is measured

by the support function for Q. The conjugate correspondence established, therefore, mani-

fests a “minimal-support duality” that involves both Z and Q. Geometrically, we translate

z until a tangency occurs between the boundaries of Z and a level set for δ∗ (d|Q). We

reformulate (14) in equivalent terms as

(16) q ∈ ∂δ (z − d|Z) ∩ ∂δ∗ (d|Q)⇔ q ∈ δQ (z|Z)⇔ δQ (z|Z) = δ (z − d|Z) + δ∗ (d|Q) .

The conjugate manifestations of δQ as a (normalized) minimal difference between q′z and

δ∗ (q|Z) and the infimal convolution of δ (·|Z) and δ∗ (·|Q) mirror the optimization princi-

ples behind Luenberger’s (1992) demonstration that benefit and shortage functions support

calculation of Paretian efficient outcomes for a competitive market. Where Luenberger’s

demonstration reaffirms that Paretian-efficient calculations reflect assumptions on prefer-

ences and the technology, Proposition 2 shows that “Paretian inefficiency measurement”

11Some authors call the infimal convolution operation epi-addition. See, for example, Rockafellar and Wets

2009.
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reflects assumptions on Z and the numeraire embedded in the choice of Q. δQ is, in essence,

a “joint product” of Z and Q. The far left-hand side of (16),

q ∈ ∂δ (z − d|Z) ∩ ∂δ∗ (d|Q) ,

which requires that the subdifferentials of δ (zo|Z) and δ∗ (z − zo|Q) overlap (tangencies

between boundaries), manifests the Dubovitskii-Milyutin Lemma that characterizes extremals

set-valued optimization problems (Isac and Khan 2008).

Different formulations of (11) can yield different perspectives on the same convex op-

timization problem. Those different perspectives often give different naming conventions.

For example, d variates in (15) can be slacks, but they also can be Lagrange multipliers

depending upon the perspective. Because they depict the directions in RS in which z is pro-

jected onto EffZ, following Ray (2007) we call them directions and the z̄ = z − d variates,

projections. We define:

(17) DQ (z|Z) ≡
{
d : q ∈ δ∗ (d|Q) ∀q ∈ ∂δQ (z|Z)

}
as the endogenous directions for (11) and

(18) PQ (z|Z) ≡
{
z − d : d ∈ DQ (z|Z)

}
,

as the endogenous projections.

We close this discussion with basic results on DQ (z|Z) and the ability of δQ (z|Z) to

determine whether z falls within Z.

Lemma 3. Let (11) have a finite solution. Then DQ (z|Z) ⊂ Q∗∞ for all z.

Proof: See Appendix.

Proposition 3. Let (11) have a finite solution.

a) z ∈ Z ⇒ δQ (z|Z) ≤ 0;

b) if Q∗∞ ⊂ C then δQ (z|Z) ≤ 0⇒ z ∈ Z; and

c) if Q is bounded, δ∗ (q|z − Z) > 0⇒ z /∈ Z.

Proof: See Appendix.
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Färe and Lovell (1978) showed the formal relationship between Farrell’s (1957) ineffi-

ciency score and Shephard’s (1953, 1970) distance function establishing that inefficiency

measures can be cardinal (function) representations of sets. From the time that Minkowski

(1911) introduced his Distanzfunktion, Minkowski functionals, gauge functions, and co-gauge

(distance) functions have played a key role in characterizing star-shaped and convex sets

(Aliprantis and Border 2007). And because these functionals are all based on some measure

of a point’s distance from a set’s boundary, their interpretation as an inefficiency function

is natural.12 It is well-known, however, that not all inefficiency measures provide function

representations of their associated Z. Lemma 3 and Proposition 3 detail restrictions on C

and Q that affect a chosen measure’s ability to represent Z exhaustively.

Antecedents

Propositions 2 and 3 have antecedents in both the broader optimization literature and in the

narrower inefficiency-measurement literature. Nirenberg’s Minimum-Norm Duality Theorem

(Nirenberg 1961 and Luenberger 1969) is of particular note. As we discuss below, the

support and the gauge functions for a closed convex set are polar to one other. And gauge

functions for compact zero-symmetrical sets on RS, in turn, form a one-to-one correspondence

with their norms (see, for example, Rockafellar 1970 Section 15). Hence, (15) encompasses

minimum-norm measures as special cases. Briec (1997), Briec and Lesourd (1999), and

Petersen (2018) examine related measures.

Different studies show that changing the price normalization changes the resulting mea-

sure. For example, early authors recognized that normalizing the dual value of “inputs”

and normalizing the dual value of “outputs” gave different inefficiency measures. Following

Luenberger (1992), Chambers, Chung, and Färe (1996, 1998) generalized that observation

to distinguish between radial input and output measures, input-directional distance func-

tions, output-directional distance functions, and technology-directional distance functions.

Ray (2007) generalized further by normalizing input and output vectors separately (also see

Aparicio, Pastor, and Ray 2013). Cooper, Pastor, Aparicio, and Borras (2011) relate the

12Indeed, Newman (1987) introduces his survey of gauge functions in economics by calling them “...sensible

measure(s) of efficiency”.
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Russell efficiency measure to (minus) the l∞ norm. Pastor et al. (2012) show that minimizing

δ∗ (q|z − Z) subject to different normalizations yields different inefficiency measures. And

by restricting attention to the canonical DEA model and normalization conditions “...rep-

resented by means of a finite set of equalities and/or inequalities...”, they induce versions

of the Banker et al. (1984) measure, a directional distance function, the weighted-additive

measure, and the Russell measure.13 Färe, Grosskopf, and Whitaker (2013) derive an endoge-

nous directional measure. Aparicio, Borras, Pastor, and Vidal (2015) show that the Russell

efficiency measure is conjugate to the revenue function subject to dual variates falling in Q

that is a special case of Proposition 4.h below.

Conjugate Correspondences

Our analysis starts with Z, isolates EffZ, and then uses (11) to measure inefficiency. Propo-

sition 2 implies that an equivalent, equally relevant, dual approach exists. One can start

with a proper closed convex inefficiency measure, δQ (z|Z), and then use the conjugacy cor-

respondence to resurrect a conjugate δ∗ (q|Z) + δ (q|Q) that is proper closed and convex.

Proposition 2 ensures the induced δ∗ (q|Z) + δ (q|Q)′ s consistency with δQ (z|Z) without the

need for ”...difficult constructive arguments” (McFadden 1978). Broad classes of functions

are closed convex. By Proposition 2, each such class defines a class of inefficiency measures

and a conjugate dual class of δ∗ (q|Z) + δ (q|Q)′ s.

Example 4. Let δQ (z|Z) =
∑
s

zs. Then

δ∗ (q|Z) + δ (q|Q) = a+

0 if q = 1

∞ otherwise

Example 5. Let δQ (z|Z) = ||z|| − a. Then

δ∗ (q|Z) + δ (q|Q) = a+

0 if ||q||∗ ≤ 1

∞ otherwise

13Because Pastor et al. (2012) do not impose convexity on their normalizing set in their general model, it

is not a special case of ours. But the listed representation results are all developed for the polyhedral case

which is covered by Proposition 2.
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where

||q||∗ ≡ sup
x
{q′z : ||z|| ≤ 1} .

Example 6. Let δQ (z|Z) = a− max
µ,λ∈∆J

{
µ : µz ≤

∑
j

λjz
j

}
where ∆J ≡

{
x ∈ RS

+ :
∑
s

xs = 1

}
denotes the unit simplex in RS and zj ∈ RS, j = 1, . . . , J . Then

δ∗ (q|Z) + δ (q|Q) = sup
z,µ,λ∈∆J

{
q′z + µ : µz ≤

∑
j

λjz
j

}
− a

Example 7. Let δQ (z|Z) = δ∗ (z|X∗) − a for nonempty closed convex X∗ ∈ RS∗. Then

δ∗ (q|Z) + δ (q|Q) = a+ δ (q|X∗).

Example 8. Let Let δQ (z|Z) = δ (z|X) − a for nonempty closed convex X ∈ RS. Then

δ∗ (q|Z) + δ (q|Q) = a+ δ∗ (q|X)

Example 9. Let fn : RS → R̄, n = 1, . . . , N be proper closed convex and

δQ (z|Z) = max
{
f 1, . . . , fN

}
.

Then δQ (z|Z) is closed convex (for example, Rockafellar (1970, Theorem 5.5)) and

δ∗ (q|Z) + δ (q|Q) = sup
z

{
q′z −max

{
f 1 (z) , . . . , fN {z}

}}
= sup

z
min
n
{q′z − fn (z)}

= min
n
{fn∗ (q)}

Composition Results

As Examples 4-9 illustrate, constructing the conjugates for simple choices of δQ is straight-

forward. The same is true for simple choices of Z and Q. But practical instances may require

more complex settings and more complex manipulations. In such instances, one strategy is

to follow McFadden (1978) and solve parts of the conjugacy correspondence for which the

underlying dual relationships are tractable and then use Proposition 2. The next proposition

presents composition rules for some common convex forms.
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Proposition 4. a) Let fn : RS → R̄, n = 1, . . . , N be proper closed convex and

δQ (z|Z) =
∑
n

fn (z) .

Then

δ∗ (q|Z) + δ(q|Q) = inf
q1,...,qN

{∑
n

fn∗ (qn) :
∑
n

qn = q, qn ∈ RS∗, n = 1, . . . , N

}
b) Let fn : RS → R̄, n = 1, . . . , N be proper closed convex and

δQ (z|Z) = inf
z1,...,zN

{∑
n

fn (zn) :
∑
n

zn = z, zn ∈ RS, n = 1, . . . , N

}
.

Then

δ∗ (q|Z) + δ(q|Q) =
∑
n

fn∗ (q)

c) Let δQ (z|Z) ≡ max
j=1,...,J

{z′q̄j − bj} with q̄j ∈ C∗ and bj ∈ R j = 1, . . . , J . Then (co {·}

denotes the convex hull of {·} in the following)

δ∗ (q|Z) + δ(q|Q) = min
λ

{
J∑
j=1

λjbj : λ ∈ ∆J q =
J∑
j=1

λj q̄
j

}
,

for all q ∈ co
{
q̄1, . . . , q̄J

}
= dom δQ∗

d) Let zj ∈ RS, j = 1, . . . , J and

δ∗ (q|Z) =


max
j=1,...,J

{q′zj} if q ∈ C∗

∞ otherwise.

Then for z ∈ dom δQ:

δQ (z|Z) = inf
d,λ

{
δ∗ (d|Q) : λ ∈ ∆J , z − d ∈

J∑
j=1

λjz
j + C

}

e) Let Z = C. Then

δQ (z|Z) = inf
zo
{δ∗ (z − zo|Q) : zo ∈ C}

f) Let Z = Z1 ∩Z2 ∩ · · · ∩ZK with each Zk ⊂ RS nonempty closed convex and
⋂
k

ri Zk 6= ∅.

Then

δQ (z|Z) = sup
q1,...,qK

{∑
k

δ∗
(
qk|z − Zk

)
− δ

(∑
k

qk|Q

)}
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g) Let δ∗ (q|Z) =
∑
k

δ∗
(
q|Zk

)
with Zk ∈ RS, k = 1 . . . , K closed convex. Then

δQ (z|Z) = inf
z1,...,zK

{∑
δ
(
zk|Zk

)
+ δ∗

(
z −

∑
k

zk|Q

)}
.

h) Let Q = Q1∩Q2∩· · ·∩QK with each Qk ⊂ RS∗ nonempty closed convex and
⋂
k

ri Qk 6= ∅.

Then

δQ (z|Z) = inf
d1,...,dK

{
δ

(
z −

∑
k

dk|Z

)
+
∑
k

δ∗
(
dk|Qk

)}
.

i) Let δ∗ (d|Q) =
∑
k

δ∗
(
d|Qk

)
with Qk ∈ RS∗, k = 1 . . . , K closed convex. Then

δQ (z|Z) = inf
d

{
δ (z − d|Z) +

∑
k

δ∗
(
d|Qk

)}
.

j) Let qj ∈ RS∗, j = 1, . . . , J and

δ∗ (d|Q) =


max
j=1,...,J

{d′qj} if d ∈ Q∗∞

∞ otherwise.

Then for z ∈ dom δQ

δQ (z|Z) = sup
q,λ∈∆J

{
δ∗ (q|z − Z) : q ∈

J∑
j=1

λjq
j +Q∞

}
.

k) Let Q = K∗ with K∗ ⊂ C∗ a nonempty closed convex cone.

δQ (z|Z) = sup {δ∗ (q|z − Z) : q ∈ K∗} .

l) Let Q = {q̃} . Then

δQ (z|Z) = δ∗ (q̃|z − Z) .

m) Let 0 ∈ Q. Then

δQ (z|Z) = inf
d
{δ (z − d|Z) + γ (d|Q∗)}

with Q∗ ≡
{
x ∈ RS : δ∗ (x|Q) ≤ 1

}
RS closed convex.

Proof: See Appendix.
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Discussion of Composition Rules

Antecedents exist for a number of the results in Proposition 4. We try to highlight them

in the following discussion. Note, first, that different restrictions on Z and Q can yield the

same δQ. The jointness inherent in δ∗ (q|Z) + δ (q|Q) can manifest itself in identification

issues associated with isolating the precise structures that generate δQ. Further evidence

of the inherent identification problem comes from the Färe et al. (2019) demonstration of

alternative strategies for generating Russell-type measures.

Parts a) through c) of Proposition 4 develop a set of calculus rules for the conjugacy

operation δQ (z|Z)
∗→ δ∗ (q|Z) + δ (q|Q) for some familiar convex forms. Cases a) and b)

correspond to addition and infimal convolution.

Case c) uses the observation that a closed convex function is the pointwise supremum

of the affine functions that it majorizes to construct a closed convex function on RS from

elements of RS∗ and R. It supports computation of an inefficiency measure in instances

where prior knowledge or observation contain information on dual variates q. For example,

let (z̄j, q̄j) ∈ RS × RS∗, j = 1, . . . , J represent J observations on z and q. Then setting

bj = q̄j′z̄j gives

δQ (z|Z) = max
j=1,...,J

{
q̄j′
(
z − z̄j

)}
and

δ∗ (q|Z) + δ (q|Q) = min
λ

{
J∑
j=1

λj q̄
j′z̄j : λ ∈ ∆J q =

J∑
j=1

λj q̄
j

}
,

as the dual conjugates (Hanoch and Rothschild, 1972). Both are computable using linear

programming techniques. Here dom δ∗ (q|Z) + δ (q|Q) = co
{
q̄1, . . . , q̄J

}
.

Parts d)-m) give calculus rules for the conjugacy operation δQ (z|Z)
∗← δ∗ (q|Z) + δ (q|Q)

for different Z and Q.

Case d) is the most familiar. It generalizes the Banker et al. (1984) variable-returns

model to accommodate netputs and a general Z∞.14 The resulting conic program isolates

endogenous projections of z falling in co
{
z1, . . . , zJ

}
+C that support the boundary of Q.15

14The related literature using the canonical DEA model is vast and impractial to cite parsimoniously.
15One computes the Charnes et al. (1978) and Banker et al. (1984) measures using linear programming

techniques. The generalization requires conic programming (Boyd and Vandenberghe 2004, Nemirovski 2007,
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When coupled with d), different choices for Q generate different classes of existing inefficiency

measures.

As a first example, let Q = {q̃} with q̃ ∈ C∗. Then

δQ (z|Z) = min
λ

{
q̃

(
z −

∑
j

λjz
j

)
: λ ∈ ∆J

}
= δ∗

(
q̃|z − co

{
z1, . . . , zJ

})
,

which is the q̃-Nerlovian inefficiency for z for co
{
z1, . . . , zJ

}
. Special cases include netput

versions of Färe and Lovell’s (1978) Russell efficiency measure, the Charnes et al. (1985)

additive efficiency measure, and the weighted-additive efficiency measure (Lovell and Pastor

1995, Cooper et al. 2011, Aparicio, Pastor, and Vidal 2016, Chambers 2023).16 Each reduces

to a support function for the Minkowski set difference z − Z which is the dual conjugate of

the indicator function for that set difference.

Now let Q = {q ∈ C∗ : q′z = 1} . Then

δQ (z|Z) = inf
λ

{
sup
q

{
q′

(
z −

∑
j

λjz
j

)
: q′z = 1

}
: λ ∈ ∆J

}

= inf
λ q

sup

{
q′

(
z −

∑
j

λjz
j

)
: q′z = 1, λ ∈ ∆J

}
= sup

q

{
q′z − δ∗

(
q|co

{
z1, ..., zJ

})
: q′z = 1

}
where the third equality follows by the Saddlepoint Theorem. The result is a transformation

of a netput version of the Farrell (1957) inefficiency measure.

Applied inefficiency analysts often segregate inputs and outputs. Now partition z as

z′ = (z̃′, ẑ′) with z̃′ ∈ RM and ẑ ∈ RS−M , partition q conformably, and define Q =

{q ∈ C∗ : q̃′z̃ = 1}. Then

δQ (z|Z) = 1 + sup
q∈Z∗∞

{
q̂′ẑ − δ∗

(
q|co

{
z1, . . . , zJ

})
: q̃′z̃ = 1

}
,

defines a transformation of the generalization of the Charnes et al. (1978) and Banker

et al. (1984) inefficiency measures that accommodates segregating inputs and outputs and

Bertsekas 2016).
16Ray (2004) shows the structural similiarity of the additive, weighted-additive, and Russell measures.
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other partitionings of netputs needed to accommodate the presence of quasi-fixed vs.variable

inputs, desirable, undesirable outputs, and other departures from the canonical set up.

The example of conical Z, case e), crystallizes the role that Q plays in determining

δQ (z|Z). Figure 1 illustrates. There, the left-hand panel illustrates conical Z and the

right-hand panel dom δ∗ (q|Z). Constant returns ensures that

δ∗ (q|Z) =

0 if q ∈ Z∗∞

∞ otherwise.

For the depicted z ∈ Z, q′z ≤ 0 for all q ∈ Z∗∞, thus

sup {q′z − δ∗ (q|Z) : q ∈ Z∗∞} = 0.

Let Q = {q ∈ Z∗∞|q1z1 = 1}, depicted by the closed line segment connecting q and
(

1
z1
, 0
)

.

Then δQ (z|Z) = q̂′z < 0, where the inequality is confirmed by noting that the angle formed

by z and q̂ is obtuse.

Cases f) and g) characterize Z exhibiting different forms of decomposability or separabil-

ity. Taking each Qk to be a closed half space gives polyhedral Z as a special case. Therefore,

case d) is a special case of f). Case f) also includes what Frisch (1965) calls multi-dimensional

assortment, where Z is composed of subsets of RS that represent sub-processes or stages in

production. Such structures have played an important role in extending canonical DEA

models to accommodate joint production of desirable and undesirable outputs (for example,

Ayres and Kneese 1969, Førsund 1998, Coelli, Lauwers, and Huylenbroeck 2007, Podinovski

and Kuosmanen 2011, Murty, Russell, and Levkoff 2012, Chen and Delmas 2012, Chambers,

Serra, and Lansink 2014, Murty and Russell 2022).

To illustrate, partition z as z = (zd, zu, zi)
′ and let Z = ZD ∩ ZU where

ZD =
{
z ∈ RS : zi can produce zd

}
, and(19)

ZU =
{
z ∈ RS : zi can produce zu

}
.

Here subscript d denotes desirable outputs, u denotes undesirable outputs or byproducts,

and i denotes inputs. ZD represents the desirable production process and ZU the clean-up

or abatement process. Kohli (1983) classifies the form in (19) as “output-price nonjoint”.
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Figure 1: Figure 1: Constant Returns and Q
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It depicts a production process that “cracks” a fixed input-bundle, zi, into separate bundles

of desirable and undesirable outputs. The output-price nonjoint specification is common in

pollution-abatement studies, where desirable and undesirable outputs are often assumed to

be produced in fixed proportions. Then

δQ (z|Z) = sup
qU ,qD

{
δ∗
(
qD|z − ZD

)
+ δ∗

(
qU |z − ZU

)
− δ

(
qD + qU |Q

)}
.

By (14)

qU + qD ∈ ∂δQ (z|Z)⇔ z ∈ ∂δ∗
(
qU |ZU

)
∩ ∂δ∗

(
qD|ZD

)
∩ ∂δ

(
qU + qD|Q

)
,

which shows that the “virtual price” of z splits into two components, one for ZD and one

for ZU .

Case f) also includes the event-contingent technologies (Chambers and Quiggin 2000,

O’Donnell and Griffiths 2006, Chambers, Hailu, and Quiggin 2011, Chambers, Serra, and

Stefanou 2015, Serra, Chambers, and Lansink 2014, Chambers et al. 2014) used in studies

of inefficiency in the presence of uncertainty.

Case g) models Z as the infimal convolution of J distinct sub-processes

δ (z|Z) = inf
z1,...,zJ

{∑
j

δ
(
zj|Zj

)
:
∑
j

zj = z

}

It characterizes, for example, decisionmakers or enterprises that operate across separate

plants or locations. It also generalizes familiar notions of input and output nonjoint tech-

nologies to netput-nonjointness that allows netputs to be freely allocated across the sub-

processes.

Cases h), i), and j) model situations where the normalization associated with (11) can be

decomposed into subsets of normalizing restrictions. Case h) treats Q as the intersection of

a finite series of convex sets. Restricting each Qk to be polyhedral, cases h) and j) generalize

broad classes of DEA-based measures including Charnes et al. (1978), Banker et al. (1984),

directional distance functions, weighted average measures, various Russell measures, Ray

(2007), and the DEA measures studied by Pastor et al. (2012).17

17As noted the weighted average and Russell measures are also special cases of Q = {q̃}.
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To illustrate, let Q = C∗ ∩Q2 with

Q2 =

{
(q̃′, q̂′) ∈ RS∗ : q̃m =

1

Mzm
, q̂n =

τzS
(S −M)zn

, τ ∈ R, m = 1, . . . ,M, n = M + 1, . . . , S

}
,

Then

δQ (z|Z) = sup
τ

{
1 + τ − δ∗ (q|Z) : q ∈ Z∗∞ ∩Q2

}
,

which is a transformation of the generalization of the Pareto-Koopmans inefficiency measure

to arbitrary Z and Z∞ (see, for example, Ray 2004, expression (5.19))

Now let Q = Q1 ∩ Q2 ∩ Z∗∞ with Q1 = {q : q′g1 ≤ 1} and Q2 = {q : q′g2 ≤ 1} with

g1, g2 ∈ RS. Then

δQ (z|Z) = sup
q∈Z∗∞

{
q′z − δ∗ (q|Z) : q′g1 ≤ 1, q′g2 ≤ 1

}
,

which generalizes Ray’s (2007) Overall (Shadow Profit) inefficiency measure (Ray 2007,

Aparicio et al. 2013, and Ray and Yang 2024) to accommodate arbitrary Z and Z∞

Cases k) and l) are straightforward consequences of (11) and need little elaboration.

Case m) shows that, when the origin belongs to Q, the class of finite Paretian inefficiency

measures specializes to the class of “minimal gauge functions”

δQ (z|Z) = inf
d
{γ (d|Q∗) : z − d ∈ Z} .

The class of “minimal-norm inefficiency measures”, in turn, is the subset of the minimal-

gauge inefficiency measures for bounded Q symmetric about zero. A norm, ρ : RS → R̄,

satisfies: a) ρ (x) ≥ 0 for all x ∈ RS, b) ρ (αx) = |α|ρ (x) for α ∈ R; and c) subadditivity

(the triangle inequality). Let Q be closed convex bounded and symmetric about 0. Then

γ (q|Q) defines a norm for RS∗, ρ∗ : RS∗ → R̄, whose polar form

ρ (d) = sup
q
{q′d : ρ∗ (q) ≤ 1}

= sup
q
{q′d : γ (q|Q) ≤ 1}

= δ∗ (d|Q)

is a norm for RS with unit ball
{
d ∈ RS : δ∗ (d|Q) ≤ 1

}
(see, for example, Rockafellar 1970,

Theorem 15.2). Special cases of ρ include the Lp norms used to define the Hölder distance
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functions studied by Briec (1997) and Briec and Lesourd (1999). Taking ρ∗ to be the Eu-

clidean norm || · || so that Q =
{
q ∈ RS∗ : ||q|| ≤ 1

}
gives

δQ (z|Z) = inf
d
{||d|| : z − d ∈ Z}

as the minimum Euclidean distance to translate z while maintaining that it belongs to Z.

Mind the Gap: Exogenous q and Measuring Dual Inef-

ficiency

Oftentimes, exogenous information on dual variates, say qo, as well as z is available. Coupled

with knowledge of Z, that allows calculation of the qo-Nerlovian inefficiency for z. Because

δQ (z|Z) maximizes Nerlovian inefficiency over Q, it can diverge from δ∗ (qo|z − Z). A tradi-

tion that traces to Farrell (1957) uses that observation to decompose qo-Nerlovian efficiency

for z for exogenous qo into a technical inefficiency component and a dual inefficiency com-

ponent.18

Fenchel’s Inequality

Fenchel’s Inequality (3) offers a natural means to examine efficiency decompositions. Apply-

ing it to δQ gives the recycled version of (13):

(20) δQ (z|Z) ≥ δ∗ (q|z − Z)− δ (q|Q)

for all z, q. Using (20), we define ϕQ : RS∗ × RS → R̄+ as

ϕQ (q, z|Z) ≡

δ
Q (z|Q) + δ∗ (q|Z)− q′z if q ∈ Q

∞ otherwise.

18More common terms for dual inefficiency are either allocative or price inefficiency. For example, Afriat

(1972, p. 582), who worked in a cost context, partitioned the “total gap...as a part due to the inefficiency

of output with respect to the input, and...misplaced allocation of cost over inputs”. When RS∗ represents

price, “virtual-price”, or “shadow-price” space, the allocative or price inefficiency interpretation is natural.

The dual terminology covers both and is more descriptive of its mathematical structure. Thus, it also applies

to non-price settings.
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ϕQ is closed convex as a function of z, closed convex as a function of q, closes any duality

gap implied by a strict inequality in (20), and for q ∈ Q measures the difference between z′s

Pareto inefficiency and its Nerlovian inefficiency. Thus,

(21) δ∗ (q|z − Z) = δQ (z|Z)− ϕQ (q, z|Z) ,

for q ∈ Q and all z.

Expression (21) invites the interpretation of ϕQ (qo, z) as the dual inefficiency component

of Nerlovian inefficiency at qo and of δQ (z|Z) as the technical inefficiency. Interpretive

issues intrude, however, for qo /∈ Q because ϕQ (qo, z|Z) then becomes arbitrarily large.

That implies an infinitely large dual inefficiency conveying the intuition that relative to qo

a decisionmaker at z makes arbitrarily large bad decisions, when in truth δ∗ (qo|z − Z) and

δQ (z|Z) are not commensurable. This intuition founders because the one-to-one relationship

between δQ (z|Z) and δ∗ (q|z − Z) becomes noninformative when q /∈ Q.

Recent work on axiomatic inefficiency measurement provides another lens through which

to analyze this aspect of ϕQ. The axiomatic approach evaluates different inefficiency mea-

sures by their ability to satisfy certain axioms (see, for example, Russell and Schworm 2009

and 2017). Usually, axioms are imposed on the proposed technical inefficiency measure, our

δQ. Aparicio, Zofio, and Pastor (2023) argue that technical inefficiency measures should

also be judged on the behavior of their associated dual inefficiency measures. They propose

that a candidate dual inefficiency measure, I : RS∗ ×RS → R̄, satisfy an Essential Property

summarized, in our notation, as19

Property 1. If z ∈ ∂δ∗ (q|Z), then I (q, z) = 0.

Aparicio et al. (2023) use examples to show that the Russell Graph Measure, the En-

hanced Russell Graph, the Additive, and the Weighted Additive measures do not satisfy

Property 1. Because these measures correspond to cases rationalized by a singleton Q = {q̃},

ϕQ (q, z|Z) =∞ for q 6= q̃ for them. Failure of a measure to satsify Property 1 translates in

our setting into noncommensurability between Nerlovian and Paretian inefficiency.

19Aparicio et al. (2023) segregate inputs and outputs and discuss separate input and output-oriented

versions of their Essential Property for both ratio-based and difference-based measures. We only consider

difference-based measures for netputs and leave the natural extensions to the interested reader.
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More generally, as a consequence of ϕQ’s convexity and Proposition 2, we have:

Corollary 1. Let δQ (z|Z) be finite. Then ϕQ is zero-minimal if and only if

q ∈ ∂δQ (z|Z)⇔ z ∈ ∂δ∗ (q|Z) + ∂δ (q|Q)

The Russell measures, the Additive measure, and the Weighted Additive cannot satisfy

Corollary 1 for arbitrary q when Q = {q̃} because then ∂δ (q|Q) = ∅ for q 6= q̃. Figure 2

illustrates the phenomenon. We assume that Z∞ = R2
− and the efficient set is the curve

labelled 0E. First, let Q be the closed line segment connecting (1, 0) and q̂. Then the set of

efficient projections is restricted to points falling below z∗ on OE. In particular, points on

the arc beyond z∗ on OE cannot be efficient projections.

Now, let Q = {q : q′g = 1} (a directional distance function). Q now encompasses all

directions in C∗ so that no point on OE is excluded from PQ (q|Q). ϕQ derived from these

measures satisfies Property 1.

The technical issue is that certain choices for Q can restrict the range of PQ (z|Z) enough

to make the link between δQ (z|Z) and δ∗ (q|z − Z) implied by Fenchel’s Inequality nonin-

formative. Or more simply, as Chambers (2023) observed, choosing a Nerlovian inefficiency

measure for a fixed q̃ to measure technical inefficiency, when information on exogenous q is

available, distorts the distinction between technical and dual inefficiency.

We note that our use of Fenchel Inequality’s, (20), differs from related discussions in some

studies (see, for example, Färe and Grosskopf 1997, Chambers et al. 1998, Chambers and

Färe 2004, Cooper et al. 2011, Zofio, Pastor, and Aparicio 2013, Aparicio, Borras, Pastor,

Vidal 2013, Petersen 2018). The difference is more semantic than substantive, but it merits

clarification. Ours follows established terminology in convex analysis, but some inefficiency

studies use different naming conventions.

As a first example, let Q =
{
q ∈ RS∗ : q′g = 1

}
with g ∈ Z∞. Then

δQ (z|Z) = sup
q
{q′z − δ∗ (q|Z)− δ (q|Q)}

= sup
q
{q′z − δ∗ (q|Z) : q′g = 1}

= sup
q

{
q

q′g

′
z − δ∗

(
q

q′g
|Z
)}

,(22)
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Figure 2: Figure 2: Essential Property Fails
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where we use the sublinearity of δ∗. Consequently, reasoning similar to (3) gives:

(23) δQ (z|Z) ≥ q

q′g

′
z − δ∗

(
q

q′g
|Z
)

for all q, z.

Different writers have named (23) and its analogues differently, including the Luenberger

Inequality, the Fenchel-Mähler Inequality, the generalized Fenchel-Young Inequality, among

others.20 Each communicates the same message. The inefficiency measure for z is an upper

bound for a q− Nerlovian inefficiency. Let q̂ solve (22), then(
q

q̂′g
− q

q′g

)′
z + δ∗

(
q

q′g
|Z
)
− δ∗

(
q̂

q̂′g
|Z
)

closes any gap in (23) and gives a “real” (in units of the directional bundle g) of the length

of that gap. For (22) picking the numeraire bundle, g, also determines the efficient direction

and efficient projection. DQ (z|Z) is a scalar multiple of g and PQ (z|Z) is the projection of

z onto EffZ in the direction g for all z.

More generally, however, DQ (z|Z) and PQ (z|Z) can vary with z. Another example

illustrates. Let Q =

{
q ∈ RS∗ :

∑
s∈1,...,S

|qs| ≤ 1

}
. Then

δQ (z|Z) = sup
q

{
q′z − δ∗ (q|Z) :

∑
s∈1,...,S

|qs| ≤ 1

}

= sup
q

 q∑
s∈1,...,S

|qs|
′
z − δ∗

 q∑
s∈1,...,S

|qs|
|Z




= inf
d

{
max
s∈1,...,S

{|ds|} : z − d ∈ Z
}

(24)

The third equality follows by (15) since now δ∗ (d|Q) = max
s∈1,...,S

{|ds|} . Thus, one can evoca-

tively write

(25) δQ (z|Z) ≥ q∑
s∈1,...,S

|qs|
′
z − δ∗

 q∑
s∈1,...,S

|qs|
|Z

 for all q, z.

20For X ⊂ RS closed convex and containing the origin, its gauge and support functions are polar to one

another. Hence,

δ∗ (q|X) = sup {q′x : γ (x|X) ≤ 1} ,

whence δ∗ (q|X) γ (x|X) ≥ 1, which manifests Mähler’s Inequality.
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Without loss of generality, let the optimizer for (24) be d1. One can now use subtraction

in (25) to derive a dual inefficiency measure. But for the real units to comparable, the

right-hand side of (25) needs to evaluated in units of z1. Because the the element of z that

optimizes (24) can vary with z, the numeraire will vary with z.

Expressions (20), (23), and (25) all convey similar information. Expression (20) gives a

dual inefficiency measure that closes the “gap” by simple subtraction, but it operates in what

an economist calls “nominal” (albeit restricted to lie in Q) rather than “real” units. Expres-

sion (23) also gives a dual inefficiency measure by simple subtraction that is expressed in real

terms, but it restricts DQ (z|Z). Expression (25) yields a real dual inefficiency measure by

simple subtraction, but it requires identification of different numeraire for each application.

Hence, dual inefficiency is not directly comparable across different z.

Conjugacy Correspondences for Dual Inefficiency

Because it is closed convex in q and closed convex in z, ϕQ is what Rockefellar (1970, Section

29) refers to as a bi-function. That observation implies that ϕQ has “a life of its own” as

part of at least two well-defined conjugacy correspondences.

In particular, when viewed from a Lagrangean perspective

ϕQ (q, z|Z) = δQ (z|Z) + δ∗ (q|Z) + δ (q|Q)− q′z

admits two parallel interpretations: one as the Lagrangean function for a closed convex

program for minimizing δQ (z|Z)+δ∗ (q|Z)+δ (q|Q) over q; and the other as the Lagrangean

function for a closed convex program for minimizing δQ (z|Z) + δ∗ (q|Z) + δ (q|Q) over z. In

the first, z plays the role of a Lagrange multiplier and q plays that role in the second.

Define ϕQ∗∗ : RS × RS → R̄

ϕQ∗∗ (z̄, z|Z) ≡ sup
q∈RS∗

{
q′z̄ − ϕQ (q, z|Z)

}
(26)

= δQ (z̄ + z|Z)− δQ (z|Z) .

Expression (26) defines the (partial) conjugate of ϕQ (q, z|Z) treated as a closed convex

function of q. The second equality follows by (11) and Proposition 2. We have:
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Proposition 5. ϕQ (q, z|Z)
∗←→ δQ (z̄ + z|Z)− δQ (z|Z)

ϕQ (q, z|Z) + δQ (z̄ + z|Z)− δQ (z|Z) ≥ q′z̄ ∀q, z̄ (Fenchel’s Inequality)

ẑ ∈ ∂qϕQ (q, z|Z)⇔ q ∈ ∂ẑδQ (ẑ + z|Z|)⇔ ϕQ (q, z|Z) + δQ (z̄ + z|Z)− δQ (z|Z) = q′ẑ

Symmetrically, we define ϕQ∗ : RS∗ × RS∗ → R̄ as the (partial) conjugate of ϕQ treated

as a closed convex function of z:

ϕQ∗ (q, q̄|Z) ≡ sup
z∈RS

{
q̄′z − ϕQ (q, z|Z)

}
(27)

= δ∗ (q̄ + q|Z) + δ (q̄ + q|Q)− δ∗ (q|Z)− δ (q|Q) ,

where the second equality follows by (11) and Proposition 2. Hence,

Proposition 6. ϕQ (q, z|Z)
∗←→ δ∗ (q̄ + q|Z) + δ (q̄ + q|Q)− δ∗ (q|Z)− δ (q|Q)

ϕQ (q, z|Z)+δ∗ (q̄ + q|Z)+δ (q̄ + q|Q)−δ∗ (q|Z)−δ (q|Q) ≥ q̄′z ∀q̄, z (Fenchel’s Inequality)

q̂ ∈ ∂zϕQ (q, zZ) ⇔ z ∈ ∂q̂δ∗ (q̂ + q|Z) + ∂q̂δ (q̂ + q|Q)

m

q̂′z − δ∗ (q̂ + q|Z)− δ (q̂ + q|Q) = ϕQ (q, z|Z)− δ∗ (q|Z)− δ (q|Q)

The dual-inefficiency measure is conjugate dual to a) a transformation of Paretian ineffi-

ciency and b) a transformation of Nerlovian inefficiency. Propositions 5 and 6 manifest the

saddle-point theorem and are direct consequences of Lemma 1 and Proposition 2. Indeed,

they convey the same mathematical information. Their force is that they establish that

ϕQ (q, z|Z), despite its frequent treatment as a residual, forms a component of a two conju-

gacy correspondences for two closed convex proper inefficiency measures. So, for example,

specification of a ϕQ (q, z|Z) that is closed convex in q and closed convex in z implies the

existence of a well-behaved δQ (z̄ + q|Z)−δQ (z|Z) and vice versa without the need for “...dif-

ficult constructive arguments” (McFadden 1978). Specification of a closed convex δQ (z|Z)

implies the existence of a conjugate ϕQ (q, z|Z) interpretable as a dual inefficiency measure.

Parallel logic applies to δ∗ (q|Z) and ϕQ (q, z|Z). In short, if one can specify a meaningful

δQ (z|Z), one can measure inefficiency and decompose it meaningfully without resorting to

solving (11).
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Which Gap?

The introduction of Luenberger’s (1992) measures into the inefficiency discussion emphasized

that different directional orientations changed measures. Recognizing that choice matters,

many contributions followed offering different perspectives and insights (Chambers et al.

1998; Tone 2001; Chambers and Färe 2004; Ray 2007; Cooper et al. 2011; Pastor et al.

2012; Aparicio et al. 2013, Zofio et al. 2013; Aparicio et al. 2015; Petersen 2018; Aparicio

et al. 2023). Our discussion helps formalize a “folk theorem” that percolates through

these contributions: Dual inefficiency can be made as large or small as one chooses. We

demonstrate by first choosing Q = {q̃} for q 6= q̃ to make ϕQ (q, z|Z) =∞ and then choosing

Q = {q} to make ϕQ (q, z|Z) = 0.

How to use that information is unresolved. A marked difference between the “axiomatic

approach to decision theory” and “axiomatic approach to inefficiency measurement” suggests

one potential avenue. Both approaches use axioms and related mathematical machinery.

But where the former emphasizes behavioral axioms imposed on preferences and induces

functional forms, the latter uses axioms as “tests” that measures should pass. Our analysis

shows that our Paretian inefficiency measures are a joint product of Z and Q. It then follows

that for a given Z, choosing Q entails a choice of δQ. We conjecture that a reasonable

place to initiate a more structured approach to developing better measures is to investigate

systematically the consequences of choosing “desirable” properties for Q.

In closing this discussion of dual inefficiency it seems wise to recall the cautionary advice

of Charnes et al. (1978, p.443) in concluding their pathbreaking work.

In private sector applications, the case for our proposed measure of efficiency

begins to weaken to the extent that competition is present. In particular it

begins to weaken as soon as freedom for the deployment of resources from one

’industry’ to another (perhaps in a removed region) is present. Assessment of

such possibilities would involve the introductioo of prices, or other weighting

devices, for the evaluation of otherwise non-comparable alternatives.

Although our measures are not designed for this sort of application they are

designed for public sector programs in which the managers of various DMU’s
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are not free to divert resources to other programs merely because they are more

profitable - or otherwise more attractive. Our measure is intended to evaluate

the accomplishments, or resource conservation possibilities, for every DMU with

the resources assigned to it. In golfing terminology it is, so to speak, a measure

of ‘distance’ rather than ‘direction’ with respect to what has been (and might

be) accomplished

At the risk of mixing golfing methaphors, our analysis emphasizes that measuring distance

cannot be separated from direction. Or in perhaps in simpler terms, you cannot separate

measured distance from the chosen yardstick.

3 Concluding Remarks

We pose inefficiency measurement as measuring the distance between an outcome and the

efficient frontier for a closed convex set, Z. We define the efficient frontier using a generalized

inequality, �C , that is a reflexive, transitive, and asymmetric convex binary relation, that

partially orders RS, and that permits characterization of the efficient set using dual variates.

We define Paretian inefficiency for an outcome’s inefficiency as the maximal distance between

the outcome and the support function for Z while restricting dual variates to fall in a closed

convex set. Thus, our formulation generalizes, while integrating into a common mathematic

formulation, broad classes of existing inefficiency-measurement strategies. The result is

a “minimal-support” inefficiency measure with characteristics that resemble the Nirnberg

(1961) minimal-norm duality. We show that the resulting Paretian inefficiency measure is

proper closed convex and conjugate dual to a restricted Nerlovian ineffiency measure that is

proper closed convex. We use that conjugate duality to construct classes of dual composition

rules for varying restrictions on Z and dual-variate normalization.

We use the Paretian inefficiency measure to decompose measured Nerlovian inefficiency

into a technical-inefficiency measure and a dual-inefficiency measure. The dual-inefficiency

measure is a closed convex bi-function that satisifies two dual conjugacies: one with a dif-

ferenced Paretian inefficiency measure and another with a differenced Nerlovian inefficiency

measure. We use the dual-inefficiency measure to investigate recent concerns raised about
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the appropriateness of Nerlovian inefficiency decompositions.

In defining an inefficiency measure, we follow a trail blazed by Debreu (1951), Farrell

(1957), Afriat (1972), and Charnes et al. (1978) that treats inefficiency measurement as

evaluating an outcome in the most favorable dual terms. That setting encompasses broad

classes of existing inefficiency measures. But other approaches exist (for example, Pastor

(et al. 2007) and Färe et al. (2019)) and their mathematical formulation appears different

from ours. Nevertheless these studies often yield measures similar to ours and other authors

following our generic approach suggesting that formal identification of the ideal structural

formulation for inefficiency measurement awaits further development.
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Proofs

Proposition 1

a) Suppose that contrary to the claim that a zo ∈ ∂δ∗ (q|Z) for some q ∈ ri C∗ and a

z ∈ Z exist for which zo − z ∈ C\ {0}. Then

δ∗ (zo − z|C∗) = 0 > q′ (zo − z)

because δ∗ (c|C∗) = δ (c|C) for c ∈ C. But this violates the definition of zo as belonging to

∂δ∗ (q|Z)

b) By definition zo ∈ EffZ ⇒ (zo − Z)∩ C\ {0} = ∅ so that zo −Z ⊂ RS and C ⊂ RS

are properly separated. Lemma 2 applies. Choose a q ∈ ri C∗ to obtain:

δ∗ (q|zo − Z) = q′zo − δ∗ (q|Z)

≥ inf {q′x : x ∈ zo − Z}

= 0

= δ∗ (q|C)

> −∞

as required.

Lemma 3

By Proposition 2 and (15):

q ∈ δQ (z|Z)⇔ ∂δ (z − d|Z) ∩ ∂δ∗ (d|Q)⇔ δQ (z|Z) = δ(z − d|Z) + δ∗ (d|Q)

By (10), dom δ∗ (·|Q) = Q∗∞ and the result follows because ∂δ∗ (d|Q) = ∅ for d /∈ dom δ∗ (·|Q).

Proposition 3

a) Immediate from the properties of δ∗ (q|Z) and (11).

b) By Proposition 2

z ∈ ∂δ∗ (q|Z) + d for d ∈ ∂δ (q|Q) .

Lemma 3 implies d ∈ C. Thus, (10 ) and δQ (z|Z) ≤ 0⇒ q′z ≤ δ∗ (q|Z) for all q establishing

the result.
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c) If Q is bounded, then Q∞ = {0}, whence Q∗∞ = RS. If δQ (z|Z) > 0 then δ∗ (q|z − Z) >

0 so that z /∈ Z by the separating hyperplane theorem.

Proposition 4

We start with a useful lemma. (See, for example, Hiriart-Urruty and LeMarëchal 2001

Proposition E.3.3.1.)

Lemma 4. Let f (x) = max
j=1,...,J

{x′pj − bj} with pj ∈ RS∗ and bj ∈ R for all j. Then for all

p ∈ co
{
p1, . . . , pJ

}
= dom f ∗

f ∗ (p) = min
λ

{
J∑
j=1

λjbj : λ ∈ ∆J p =
J∑
j=1

λjp
j

}

where co {·} denotes the convex hull and ∆J ⊂ RJ denotes the unit simplex.

We now prove the proposition

a) and b) are consequences of the conjugacy between addition and infimal convolution.

(For example, Rockafellar 1970 Theorem 16.4, Hiriart-Urruty 2001 Theorem E.3.2.1).

c) Let δQ (z|Z) = max
j=1,...,J

{z′q̄j − bj} . Then Lemma 4 requires for all q ∈ co
{
q̄1, . . . , q̄J

}
=

dom δQ∗ that

δQ∗ (q|Z) = min
λ

{
J∑
j=1

λjbj : λ ∈ ∆J q =
J∑
j=1

λj q̄
j

}
d) Let zj ∈ RS, j = 1, . . . , J and

δ∗ (q|Z) =


max
j=1,...,J

{q′zj} if q ∈ C∗

∞ otherwise.

Then using Lemma 4 gives

δ (zo|Z) =

0 if zo −
∑J

j=1 λjz
j ∈ C, λ ∈ ∆J

∞ otherwise.
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Using (15)

δQ (z|Z) = inf
z=zo+d

{δ (zo|Z) + δ∗ (d|Q)}

= inf
z=zo+d


0 if zo ∈

∑J
j=1 λjz

j + C, λ ∈ ∆J

∞ otherwise.

+ δ∗ (d|Q)


= inf

d,λ

{
δ∗ (d|Q) : z − d ∈

J∑
j=1

λjz
j + C, λ ∈ ∆J

}

for z ∈ dom δQ.

e) Let Z = C. Then

δ (z|Z)

0 if z ∈ C

∞ otherwise.

Applying (15) gives the result.

f) Let Z =
⋂
k

Zk with each Zk ⊂ RS, k = 1, . . . , K nonempty closed convex and⋂
k

ri Zk 6= ∅. Then δ (z|Z) = 0 ⇒
∑
k

δ
(
z|Zk

)
= 0. Using the conjugacy between addition

and infimal convolution gives

δ∗ (q|Z) = inf
q1,...,qk

{∑
k

δ∗
(
qk|Zk

)
:
∑
k

qk = q

}
,

and the result then follows from (11).

g) Let δ∗ (q|Z) =
∑
n

δ∗
(
q|Zk

)
. Then the conjugacy between addition and infimal convo-

lution gives

δ (z|Z) = inf
z1,...,zK

{∑
k

δ
(
zk|Zk

)
:
∑
k

zk = z

}
,

and (15) gives

δQ (z|Z) = inf
z1,...,zK

{∑
δ
(
zk|Zk

)
+ δ∗

(
z −

∑
k

zk|Q

)}
.

h) Let Q = Q1 ∩ Q2 ∩ · · · ∩ QK with each Qk ⊂ RS∗ nonempty closed convex and

∩
k
ri Qk 6= ∅. Then as in the proof of f)

δ∗
(
d|Q1 ∩Q2 ∩ · · · ∩QK

)
= inf

{∑
k

δ∗
(
dk|Qk

)
: d =

∑
k

dk

}
,
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and using (15) gives

δQ (z|Z) = inf
z=zo+d

{
δ (zo|Z) + inf

{∑
k

δ∗
(
dk|Qk

)
: d =

∑
k

dk

}}

= inf
d1,...,dK

{
δ

(
z −

∑
k

dk|Z

)
+
∑
k

δ∗
(
dk|Qk

)}
.

i) Immediate from the assumption and (15).

j) Let qj ∈ RS∗, j = 1, . . . , J and

δ∗ (d|Q) =


max
j=1,...,J

{d′qj} if d ∈ Q∗∞

∞ otherwise.

Then as in the proof of d)

δ (q|Q) =

0 if q ∈
∑J

j=1 λjq
j +Q∞, λ ∈ ∆J

∞ otherwise.

and the result follows from (11).

k) Immediate.

l) Immediate.

m) Let 0 ∈ Q. Then, by the properties of gauge functions, Q = {q : γ (q|Q) ≤ 1}. The

polarity between gauges and support functions then implies that

δ∗ (d|Q) = sup
q
{q′d : q ∈ Q}

= γ (d|Q∗)

where Q∗ ≡
{
d ∈ RS : δ∗ (d|Q) ≤ 1

}
is closed convex with 0 ∈ Q∗ (for example, Rockafellar

1970 Theorem 14.5). Using (15) gives the result.
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