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1 Introduction

Measures of productivity growth and economic efficiency play a central role in agricultural
economics because they provide empirical benchmarks for performance differences across
farms, regions, and time, and because they connect observed outcomes to technology, con-
straints, and incentives. This paper reviews methodological advances in agricultural produc-
tivity and efficiency analysis with an emphasis on contributions since 2010.

Our review focuses on economically relevant measures of performance that preserve a
functional representation of technology. Consequently, we prioritize distance functions and
surplus functions (directional distance functions) over alternative approaches because they
offer two critical advantages that are essential for rigorous economic analysis. First, they
provide complete functional characterizations of the production technology . This allows
the technology set to be described mathematically, ensuring a direct link between physical
production possibilities and the efficiency measure itself. Second, these functions support du-
ality results that link technical efficiency to economic optimization. Under standard axioms,
distance and surplus functions form dual pairs with the cost, revenue, and profit functions.
This duality is indispensable for applied work as it allows researchers to recover information
about technology from economic data (and vice versa) and to interpret efficiency scores in
terms of lost profit or excess cost. By maintaining this focus, we ensure that the measurement
of efficiency remains tethered to the fundamental economic principles of cost minimization
and profit maximization.

The remainder of this paper is organized as follows. Section 2 establishes the basic con-
cepts of production, reviewing the standard axioms and formally defining the distance and
surplus functions alongside their dual economic relationships. Section 3 surveys the core
empirical methods for measuring productivity and efficiency, including Data Envelopment
Analysis (DEA) , Stochastic Frontier Analysis (SFA) , and developments in robust nonpara-
metric estimation and uncertainty. Section 4 then synthesizes recent agricultural applica-

tions organized around five themes: (i) heterogeneity and technology gaps, (ii) dynamics,



adjustment, and long-run productivity, (iii) environment, by-production, and circularity, (iv)

spatial and institutional constraints, and (v) uncertainty management. Section 5 concludes.

2 Basic concepts in production

2.1 The technology and standard axioms

The production technology transfers a vector of N inputs, x € Rf , into a vector of M

outputs, y € ]Rﬂ\f . This is represented by the technology set,
T = {(z,y) € RY x R} : 2 can produce y}

Standard theory requires that 7" satisfy several axioms (Koopmans, 1951; Shephard, 1970;
Fare et al., 1994). These include:

e Non-emptiness: The technology set T' is not empty.

e Closedness: T is a closed set. This property ensures well-defined boundaries of T’

that are included in T

e Boundedness: For any given finite vector of inputs z, the set Y(z) = {y : (z,y) € T}
is bounded. This implies that infinite amounts of outputs cannot be produced from

finite inputs.

e Free disposability of inputs and outputs: if (z,y) € T then (2°,4°) € T for
(x°,—y°) > (x,—y). Generalizes the traditional notions of non-negative marginal

products and marginal cost.

e Convexity: T is a convex set: (a',y') € T and (2*,4*) € T = Mz, y') + (1 —

N (z?%,y%) € T for 0 < A < 1. Convexity ensures T does not exhibit increasing returns.



2.2 Distance functions and Surplus functions

For each feasible input vector x € Rf , the output set is defined:

Y(z)={yeRY : (z,y) €T},

and for each y € RY, the input set is

Xy)={zeRY: (2,y) €T}

Following Shephard (1970), the output distance function is defined:

Dy(z,y) = inf{0 >0:y € 0Y(z) }.

Under the standard axioms, D, is sublinear (positively homogeneous and convex) in y and

Y(z) ={y: D,(x,y) < 1}. The input distance function is defined:

Di(z,y) = sup{p>0:2 € pX(y)}

Under the standard axioms, D; is superlinear (positively homogeneous and concave) in z
and X (y) = {z : Di(z,y) > 1}.

D,(z,y) and D;(x,y) provide radial characterizations of Y (x) and X(y). The output
distance function identifies how much Y (z) needs to be radially “shrunk” to bring y to its
frontier. The input distance function how much X(y) needs to be radially expanded to
make x a frontier point. Figure 1 illustrates the derivation ofthe input distance function
for 2° € X(y). X(y) is everything on or to the northeast of solid curve labelled X (y) and
D;(x°,y)X (y) is everthing on or to the northeast of the dashed curve.

The surplus (directional-distance function) (Luenberger, 1992; Chambers et al., 1996,

1998), which projects (z,y) towards 1”s along a specified path g = (g, g.), generalizes the
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Figure 1: Input Distance Function



input and output distance functions.

Di(z,y) = sup{ B E€R: (z — Bgs, y+Bg,) €T }.

Altering g allows varying non-proportional expansions of selected outputs and contractions of
selected inputs; the radial measures are recovered as special cases by taking g proportional to

(y,x). Under the standard axioms DY is concave in (z,y), satisfies the Translation Property:
DI(x — ags,y + agy) = D(z,y) — «, (1)

and T' = {(z,y) : DY(z,y) > 0}.

2.3 Cost, Revenue, and Profit Functions

Under the standard axioms,the distance and surplus functions provide function characteri-
zations of T' that support theory and empirical practice. Each also forms a natural (well-
known) dual pair with an indirect objective function (Shephard 1970; Luenberger 1992).
The dual relations establish that either the primal or dual perspectives provide equivalent
characterizations of technical relations.

The cost function, c(w,y), gives the cheapest possible way to produce the output vector,
y, at input prices, w € Rﬁ . Under the standard assumptions, it forms the following dual

pair with the input distance function:!

clw,y) = igf{w'm : Di(x,y) > 1} (2)

Di(z,y) = inf{w'z:c(w,y) > 1}

The revenue function, R(p, ), gives maximal feasible revenue for output prices, p € Rf ,

Debreu (1951)’s derivation of the coefficient of resource utilization, which is equivalent to a distance
function, follows (2). Both (2) and (3) manifest the mathematical principles underlying the polar duality of
the gauge and support functions for closed convex sets. See, for example, Rockafellar (1970) Theorem 14.5.



and input use x. It forms a dual pair with the output distance function.

R(p,z) = Sl;p{p’y:Do(x,y)Sl} (3)
Dy(w,y) = Sgp{p’y:R(p,x)Sl}

The profit function, w(p,w), gives maximal profit for prices (p,w). It forms a dual pair

with the surplus function.

(p,w) = sup{p'y —w'z: DI(x,y) > 0} (4)

"1"7/y

Di(z,y) = inf{r(p,w)— (p'y—w'z):p'g, +w'g, =1}
p,w

The essence of each of these dual relationships lies in the ability of distance and surplus
functions to characterize T'. In each case, that permits formulating the relevant economic
optimization problem as a nonlinear program where the distance or surplus function char-
acterizes the nonlinear constraint. We illustrate with surplus function. By the definition of
D9(x,y), we know that (x — D9(z,y)g,,y + D?(z,y)g,) € T for all (z,y). Therefore it must

be true that

m(p,w) > p'(y + DY (z,y)g,) — w'(x — D(x,9)g,) for all (z,y,w,p)

which implies that

m(p,w) — (p'y — w'z)
P9y + Wy,

> DI(z,y) for all (z,y,w,p).

Because this inequality holds for all (w, p), it surely holds when (w, p) are chosen to minimize
the left-hand side. Our conditions on 7' suffice to ensure that the inequality holds as an
equality at the minimizing (w, p).

Besides offering different perspectives on 7', these dual relations characterize the economic



principles underlying the usuage of distance and surplus function to attach shadow (virtual)

prices to non-priced inputs or outputs.

2.4 Defining efficiency

Intuition suggests that an input-output bundle, (z,y), is technically efficient if it lies on the
frontier of T'. In terms of input or output distance functions, these are the input-output
combinations where the respective distance function equals one. For surplus function, it’s
those (z,y) for which DY(x,y) = 0.

An input-output bundle, (z,y), is usually defined to be economically efficient for prices
(p,w) if T(p,w) = p'y — w'z.2 The duality between T and 7(p,w) requires that if (x,y) is
economically efficient, it must be technically efficient. Conversely, duality also requires that
if T is nonempty closed convex, then technical efficiency ensures that there exist (w,p) for
which (x,y) are technically efficient. So, it would seem that technical and economic efficiency
are the same thing.

There is a catch, however. That intuition does not correspond with a common notion of
technical efficiency that is attributed Koopmans (1957). Koopmans definition rests formally
on the Paretian criterion attached to the traditional < partial ordering of R™*¥ . It defines
(x,y) € T as technically efficient if there exists no other (z°,¢y°) € T such that (x°, —y°) <
(x,y) with at least one inequality strict. Figure 2 illustrates a case where: A is on the frontier
of the input set X(y), A is economically efficient for input price constellations satisfying
w = (0,wy) with we > 0, but A is inefficient in the Koopmans sense because usage of
x1 can be decreased without affecting the production of y. The lacuna between Koopman’s
efficiency definition and the above definition of economic efficiency is closed by limiting prices
of inputs and outputs to be strictly positive.®> In other words, all inputs and outputs are

treated as economic “goods”. While this notion of technical efficiency works well in many

2Cost efficiency for z and revenue efficiency for y are defined analogously.
3Technically, this requires that we restrict attention to prices falling in the relative interior of the effective
domain of 7(p, w), which under free disposability of inputs and outputs contains only positive prices.
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Figure 2: Koopmans Inefficiency

settings, it also fails in many practical setting. Agriculture, in particular, offers obvious and
well-known examples that range from the existence of input congestion to the production
of damaging environmental emissions and onto material-balance concerns. Each of these
conflict with the traditional notion of freely disposable inputs and outputs upon which the
Koopmans criterion rests.

Starting with Shephard’s (1970) introduction of the notion of weakly disposable outputs,
many attempts have been made to relax free disposability of inputs and outputs to accom-
modate its conflict with physical reality. Chambers (2026) develops a flexible framework for
defining and measuring efficiency. Efficient outcomes are defined relative to a generalized
partial ordering of RM+¥ denoted =<, generated by a cone C' C RM* that reflects specific
disposability assumptions on inputs and outputs. (The traditional assumption of free dispos-

ability corresponds to a particular choice of C.) Under the assumption that 7" is a nonempty,



closed, convex set that satisfies this generalized disposability property, Chambers (2026)
develops a generalized inefficiency measure and conjugate duality for it that generalizes the

duality results in (2), (3), and (4).

3 Empirical Methods for Measuring Productivity and

Efficiency

3.1 Data Envelopment Analysis (DEA)

Data Envelopment Analysis (DEA) is a method for evaluating the relative efficiency of
decision-making units (DMUs). Following the pioneering contributions of Farrell (1957),
Afriat (1972), Charnes et al. (1978), and Banker et al. (1984), the DEA framework uses
the standard axioms imposed on T and observed data to construct an empirical envelope
of the observed data. That empirical envelope is then used to construct a conservative
approximation to the “best-practice production frontier”.

Given K observed DMUs (indexed i = 1,..., K), each with N inputs (indexed n =
1,...,N) and M outputs (indexed m = 1,..., M), the canonical DEA framework constructs
the approximation to 7" as the convex hull of observed activities using non-negative intensity

variables z;. The canonical conservative approximation to 7T’ is:

K
Ty = {(fc,y): S st S, n=1,...,N;
k=1

K

An adaptation of this framework intended to accommodate inconsistencies of the free



disposability axiom is to approximate 7" as the intersection of two sub-technologies: a “good-
output” sub-technology that is freely disposable in y and an “emission” sub-technology in
which b is weakly disposable, linked by accounting (material-balance) restrictions (Forsund,
2009; Murty et al., 2012; Forsund, 2018). In DEA, this yields a pair of intensity systems—
one for producing y and one governing b—that jointly satisfy input constraints and the
linking conditions. This framework disentangles production and abatement activities and
enforces that reductions in b absorb resources or forgo good output, thereby operationalizing
weak disposability without ad hoc transformations of the bads. While the exact specification
depends on the empirical context (and available abatement variables), this adjustment to the
model preserves relevant aspects of the standard model while still supporting a solid basis

for environmental performance analysis (Fgrsund, 2009; Murty et al., 2012; Ray, 2022).

3.2 Stochastic Frontier Analysis (SFA)

Stochastic Frontier Analysis (SFA) offers a parametric alternative to DEA by modeling the
frontier as a stochastic function. Unlike traditional regression methods that attribute all
deviations from an estimated production relationship to statistical noise and assume full
efficiency, SFA decomposes this deviation into statistical noise and inefficiency (Kumbhakar
et al., 2022). This decomposition allows researchers to estimate the production technology
and the extent of inefficiency for a sample or individual DMUs.

The benchmark Stochastic Frontier Model (SFM), independently proposed by Aigner
et al. (1977) and Meeusen and van Den Broeck (1977), forms the foundation of SFA. The

standard cross-sectional SFM is specified in its multiplicative form as:

yi = f(xi; B) exp(v; — ;) (6)

where y; denotes the output of production unit ¢, x; is a vector of inputs for unit 7, and

f(+) is a specific parametric production function (for example, Cobb-Douglas or Translog)

10



with a vector of parameters [ to be estimated. The term wv; represents statistical noise
that accounts for measurement errors and other random shocks. The term wu; captures non-
negative technical inefficiency (u; > 0) representing the extent to which the unit i operates
below the stochastic production frontier f(z;; 3) exp(v;).

Taking natural logarithms of Equation (6) transforms this model into an additive one,

which is convenient for estimation:

In(y;) = In[f (24 B)] + vi —w,

Let In[f(z;; B)] be denoted as fi,(x;; 5). The composed error term is €; = v; —u;. To estimate
the SFM and disentangle inefficiency wu; from noise v;, distributional assumptions are imposed
on these two error components (Aigner, Lovell, and Schmidt 1977; Meeusen and van Den
Broeck 1977).

The application of SFA faces several econometric challenges. A key concern is input
endogeneity that arises from input choices being correlated with unobserved shocks (v;) or
the level of inefficiency (u;). Ignoring such endogeneity can lead to biased and inconsistent
parameter estimates. Several approaches have been developed to address endogeneity. These
include Corrected Two-Stage Least Squares (C2SLS), which employs standard 2SLS with
instruments and corrects the intercept using moments of the 2SLS residuals. Likelihood-
based approaches involve specifying a system of equations for the production frontier and
the endogenous inputs, and then maximizing a joint likelihood function (Amsler et al., 2016).
Another method is the Method of Moments approach which adapts the first-order conditions
of the MLE under exogeneity, utilizing instrumental variables for conditions involving en-
dogenous regressors (Amsler et al., 2016). Lastly, the Economic Approach involves estimating
the SFM concurrently with the first-order conditions derived from a firm’s optimization prob-
lem, therefore explicitly modeling input choices. If endogeneity is present, the Jondrow et al.

(1982) inefficiency predictor can be modified to E(u;|€;,n;) (where n; are residuals from the

11



endogenous regressor equations), potentially leading to improved predictions of inefficiency.

3.3 Robust and Conditional Nonparametric Efficiency Analysis

DEA provides a flexible nonparametric benchmark for relative efficiency, but empirical work
often goes beyond ranking DMUs and asks whether contextual factors—such as extension
services, soil quality, climate, or subsidies—systematically influence performance. This cre-
ates a distinct set of statistical challenges that do not arise in the same way in parametric
stochastic frontier models. In particular, (i) DEA efficiency scores are estimated objects
constructed from a common sample frontier, (ii) they are biased in finite samples, and (iii)
they can be highly sensitive to outliers and extreme observations. Robust nonparametric in-
ference therefore typically requires an additional statistical layer on top of the deterministic
frontier construction.

Historically, a prevalent approach was a “two-stage” procedure in which DEA scores es-
timated in the first stage were regressed on environmental variables in a second stage. Simar
and Wilson (2007) show that this practice yields invalid inference. Because DEA scores are
computed relative to a common estimated frontier, efficiency estimates are serially depen-
dent across DMUs, violating the independence assumptions underlying standard regression
methods. Moreover, DEA scores are biased estimators of latent efficiency, implying that
naive second-stage regressions also suffer from measurement error in the dependent variable.

The Simar—-Wilson framework resolves these issues by specifying a coherent data-generating
process for two-stage analysis and implementing a double-bootstrap procedure (Simar and
Wilson, 2007). The first bootstrap loop corrects the finite-sample bias in the DEA efficiency
estimates. The second bootstrap loop then propagates the dependence structure induced by
frontier estimation to obtain valid confidence intervals and hypothesis tests for the param-
eters in the second-stage regression. Empirical applications in agriculture, such as Latruffe
et al. (2008) and Balcombe et al. (2008), illustrate that ignoring these statistical properties

can lead to spurious conclusions about the significance and magnitude of efficiency drivers.

12



A complementary line of work emphasizes robustness in nonparametric frontier estima-
tion. In many agricultural datasets, measurement error, rare weather shocks, or hetero-
geneous technologies can generate extreme observations that disproportionately shape the
DEA/FDH frontier. Robust “partial frontier” estimators mitigate this sensitivity by bench-
marking units against a frontier that is intentionally less influenced by extremes (e.g., order-m
and order-« frontiers), thereby trading a small amount of approximation for improved stabil-
ity and interpretability (Daraio and Simar, 2007). This robustification is particularly useful
when the objective is comparative performance evaluation rather than exact enveloping of
all sample points.

Beyond robustness, Daraio and Simar (2005) and Daraio and Simar (2007) develop a
conditional efficiency framework in which environmental variables enter directly into the
construction of the attainable set. Rather than treating context only as a second-stage de-
terminant of inefficiency, conditional frontiers evaluate each DMU relative to peers operating
under comparable conditions. This approach is well-suited to settings where agro-climatic
conditions or institutional environments shift feasible production possibilities and where sep-

arability assumptions implicit in conventional two-stage methods may be questionable.

3.4 Efficiency Measurement Under Uncertainty

Traditional efficiency analyses assume a deterministic production environment or treat stochas-
tic elements as statistical noise. Thus, the stochastic frontier method estimates a frontier
for production process that is non-stochastic but whose observed outcomes are due to the
traditional sources of econometric error.

Most real-world producers, however, operate in environments where stochastc factors
that are beyond their control, such as weather and macroeconomic outcomes, affect their
realized outcomes. This is peculiarly true for agriculture production whose intrinsic nature is
inherently stochastic. Chambers and Quiggin (2000, 2002) develop a generalized framework

to understand production decisions and efficiency in such environments. Originating in
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the work of Arrow (1953), Savage (1954), and Debreu (1959), this approach generalizes
the notion of output. Working in the case of a single-output technology, the approach
treats production as a random variable, ¥ = (y1,%s,...,ys) € R°, where each component
ys corresponds to the specific output that will be realized if a particular state of nature s
occurs. Producers make their input decisions (z) ex-ante, before the resolution of uncertainty,
selecting a production plan (z,y) from a technology set 7" that defines feasible combinations
of inputs and state-contingent output vectors. The state determining what output level
occurs is only determined after (x,y) has been selected by the producer.

Efficiency estimation is complicated by the fact that output is formally an S—dimensional
vector, but we, as researchers, only observe a one-dimensional scalar outcome that corre-
spond to the state that actually occurs. Econometric methods have been developed to infer
or account for these multiple potential realities. One strategy is to empirically characterize
distinct production environments for each relevant state of nature. Instead of assuming a
single production frontier, this perspective acknowledges that the feasible output set, and
thus the benchmark for efficient performance, shifts with the prevailing state (O’Donnell
et al., 2010). The analytical task then becomes identifying these differing productive ca-
pacities. Efficiency can be evaluated conditional on the specific circumstances a producer
encounters. This allows for a clearer distinction between genuine inefficiency and outcomes
attributable to unfavorable operating conditions.

Another strategy is reconstructing the ex-ante set of production possibilities. Because
only one state of nature is realized and observed for each producer, this method aims to infer
the unobserved elements of the state-contingent output vector (yi,...,ys). This is achieved
by leveraging observable variables (such as detailed weather data, agronomic indicators, or
relevant market indices) that are correlated with the underlying, unobservable states of na-
ture. By relating these proxies to observed outputs, it is possible to empirically approximate
the range of outcomes the producer might have achieved across various states, creating a

more comprehensive basis against which ex-ante efficiency can be assessed (Chavas, 2008;
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Nauges et al., 2011; Bokusheva and Barath, 2024).

A third strategy is to utilize economic valuation principles to understand the state-
contingent technology through its dual representation. The premise is that rational pro-
ducers or competitive markets implicitly assign values (marginal costs or shadow prices)
to achieving outputs in different states of nature. Econometric analysis attempts to es-
timate these state-dependent values. Once the cost structure of producing the vector of
state-contingent outputs, c(w,y), is identified, this provides a complete (dual) description
of the underlying state-contingent technology. Efficiency is then evaluated by comparing a
producer’s actual resource use or costs against the minimum cost frontier defined by this
comprehensive technological representation (Chambers, 2007; Chambers and Quiggin, 2010;
Shankar, 2015).

Data Envelopment Analysis (DEA) has also been adapted for uncertain environments.
Event-specific DEA partitions data based on observable events that proxy for states of na-
ture. This allows for the estimation of distinct frontiers for each event or directly incorporates
environmental variables into the model structure (Chambers et al., 2011; Skevas and Serra,
2016). Another approach involves the direct elicitation of producers’ ex-ante state-contingent
output expectations. Instead of inferring them, researchers ask producers to specify their ex-
pected outputs (yi,...,y%) for their current input use z* under various predefined scenarios
representing different states of nature. These elicited data are then used to construct DEA
frontiers that explicitly reflect the producers’ own perceptions of their state-contingent pro-
duction possibilities, against which their efficiency can be assessed (Chambers et al., 2015a;

Serra et al., 2014).

4 Recent Contributions in Agriculture

This section reviews methodological extensions in productivity and efficiency analysis that

have been motivated by the distinctive biological, environmental, and institutional features
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of agricultural production.

4.1 Heterogeneity and Technology Gaps
4.1.1 The Metafrontier Framework

Agricultural production is characterized by substantial heterogeneity across regions, farm
types, and producer groups due to differences in agro-climatic conditions, resource endow-
ments, production scale, and institutional environments (Alem et al., 2019). When such
heterogeneity is ignored, standard pooled frontier models that impose a common technol-
ogy across all producers may conflate differences in feasible production opportunities with
differences in performance.

To address this issue, the metafrontier framework evaluates performance relative to both
group-specific technologies and a common reference technology that envelopes them (7*)
(Battese and Rao, 2002; Battese et al., 2004; O’Donnell et al., 2008). The metafrontier
represents the boundary of the union of group-specific technology sets while each group
frontier characterizes the best practice attainable within a particular production environment
(Figure 3). This approach allows production units operating under different technologies to
be compared without imposing a homogeneous production frontier.

Define group-specific production processes {T},}¢_, and a metafrontier T* that envelopes

their union. For each group k, the group output is

Yi(z) ={y € Rﬂ\f (z,y) € Ty},

and define the group output distance function

DE(x,y) =inf{6 >0: y€0Yi(r)}

The metafrontier output set Y*(z) = {y : (x,y) € T*} and its output distance function

16



Metafrontier

Group frontier

Figure 3: Metafrontier and group frontier.

DX(z,y) are defined in a parallel manner. Output-oriented technical efficiency relative to

the group frontier is measured by the group output distance,
TEy(z,y) = DF(z,y) € (0,1].

The technology gap ratio (the distance between the group frontier and the metafrontier at

(x,y)) can be expressed as the ratio of distance functions:
TGRy(z,y) = 2et2¥)

Overall performance relative to the metafrontier is
TE*(z,y) = D} (z,y) = TEr(z,y) X TGRy(x,y).

Within this decomposition, T'Ej, captures how effectively a producer uses the technol-

ogy available within its environment, whereas T'G' R; measures the distance between that

17



environment’s frontier and the best-practice technology represented by the metafrontier. In
agricultural settings, T'E}, is often interpreted as (conditional) managerial performance while
TGRy, reflects structural technology gaps associated with production conditions, scale, in-
frastructure, or institutions. A growing empirical literature applies this framework to identify
structural gaps across observable groups. For exmaple, Alem et al. (2019) apply a stochastic

metafrontier model to Norwegian dairy farms and identify significant regional gaps.

4.1.2 Endogenous Groupings and Estimation

A practical question is how groups (and therefore 7)) should be defined. Many studies impose
groups ex ante (for example, regions or farm types). However, in agricultural data, the
relevant regimes often reflect production systems that cut across administrative boundaries
and are only partially captured by observable indicators. Latruffe et al. (2023) treat the
technology regime as a latent variable. Using a latent-class stochastic frontier combined with
a metafrontier, they identify intensive and extensive dairy technologies endogenously. This
reveals that performance gaps are often driven by the specific production system adopted
rather than the country of location.

Endogenizing regimes, however, often makes estimation more demanding, especially in
hierarchical panel metafrontier models that separate farm- and group-level components or
distinguish persistent from transitory performance. In such cases, maximum-likelihood ap-
proaches may require numerically intensive integration over latent components. Skevas
(2025a) proposes a Bayesian estimator that uses simulation-based inference (MCMC with
data augmentation) instead of numerical integration. This improves tractability in applica-
tions that separate farm-level and group-level components and distinguish persistent from

transitory performance differences in panel data.
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4.1.3 Alternatives to Discrete Segmentation

Beyond discrete group frontiers, two alternatives are prominent: measurement-based stan-
dardization that reduces spurious segmentation, and models that allow technology to vary
continuously across space.

Pieralli (2017, 2022) argues that apparent technological differences often arise from treat-
ing environmental endowments, such as soil, as simple scalars rather than multidimensional
economic inputs. By utilizing separability theory to construct quality-adjusted indices, re-
searchers can retain a single frontier that accounts for non-monotonic environmental char-
acteristics, thereby reducing spurious technology segmentation. This measurement-based
logic extends to other resources; Vrachioli and Tzouvelekas (2022) argues that water scarcity
should be modeled as a quality-adjusted effectiveness issue, proposing an “effective water
use” input that disentangles degradation from volumetric shortages.

Finally, technological heterogeneity need not be discrete. Technology and constraints may
vary continuously across space because climate, soils, institutions, and information diffusion
change gradually. This motivates models in which the frontier is spatially structured rather
than segmented into independent groups. For example, Alemayehu and Kumbhakar (2025)
model technology and innovation as spatially correlated processes so that frontier parameters

vary with location.

4.2 Dynamics, Adjustment, and Long-Run Productivity

Agricultural production decisions are intertemporal. Biological cycles, quasi-fixed inputs,
and irreversible investments tie current decisions to future outcomes and generate adjust-
ment costs. As a result, a static frontier benchmark that evaluates each period in isolation
can misinterpret transitional behavior as inefficiency. Dynamic extensions of efficiency and
productivity analysis address this benchmark mismatch by incorporating intertemporal con-
straints and trade-offs, either through productivity decompositions or through explicitly

dynamic frontiers.
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4.2.1 Index-number decompositions

A first strand employs index-number productivity decompositions to measure productiv-
ity change along observed adjustment paths without imposing period-by-period optimality
(Chambers and Diakosavvas, 2022). These methods compare observed input—output bundles
across time and allow the production frontier to shift between periods, decomposing produc-
tivity growth into components associated with technical change, efficiency change, and scale
or mix effects. Transitional dynamics, such as gradual capital adjustment, learning-by-doing,
and recovery from adverse shocks, are reflected in measured efficiency and scale components
while frontier shifts capture technological progress.

Empirically, O’Donnell (2012) shows that while technical change drives long-run U.S. pro-
ductivity, short-run fluctuations largely reflect adjustment costs. Recent work refines this by
modeling weather as a stochastic input: Chambers and Pieralli (2020) and Chambers et al.
(2020) find that weather shocks and slowing adaptation, rather than declines in technolog-
ical capability, drive TFP variability in the U.S. and Australia. Because this refinement
treats weather as a stochastic input, it requires consistent weather indexing to cleanly sep-
arate shocks from technical change (Chambers et al., 2022). Beyond weather, Sheng (2025)
decomposes agricultural productivity growth into efficiency change, technological progress,
and capital deepening, allowing technical change to be non—Hicks-neutral. Applying this
framework to OECD agriculture, Sheng (2025) shows that frontier shifts are driven mainly

by labor-augmenting capital deepening rather than by improvements in technical efficiency.

4.2.2 Dynamic frontiers with quasi-fixed inputs

A second strand introduces dynamic frontier models that incorporate intertemporal con-
straints into efficiency measurement. These approaches extend SFA and DEA by allowing
for quasi-fixed inputs, capital accumulation, or lagged production effects.

Using dynamic profit frontiers, Ang and Oude Lansink (2018) show that short-run in-

efficiency in Belgian dairy farming emerged endogenously during capital adjustment, while
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Ang and Kerstens (2023) document similar transitional productivity losses in French meat-
processing firms. These findings highlight that part of what appears as “inefficiency” in
the short run can be an endogenous consequence of adjustment. Complementary economet-
ric work makes this distinction explicit by separating persistent from transient components
of performance. Multi-component stochastic frontier models such as the Generalized True
Random Effects (GTRE) framework partition deviations from the frontier into unobserved
producer-specific heterogeneity (), persistent inefficiency (;), transient inefficiency (uy),

and idiosyncratic noise (v;). The log-linearized production relationship is specified as:

In(yir) = W[f(zir; B)] + i + vie — (U5 + ugr).

Kumbhakar et al. (2014) show that failing to account for unobserved producer effects can
overstate persistent inefficiency using Norwegian grain farm data. This line of research has
been refined to address endogeneity in input choices. For example, Bokusheva et al. (2023)
analyze French crop farms and exploit moment conditions derived from the likelihood first-
order conditions to obtain consistent parameter estimates in the presence of simultaneity
between inputs and unobserved shocks. Alongside Minviel and Sipildinen (2021), they find
that a substantial share of measured agricultural inefficiency is persistent, which suggests
that long-run structural constraints and factor rigidities are often more important drivers of
performance gaps than temporary behavioral errors.

Parallel evidence from nonparametric methods points in the same direction. Dynamic
DEA models relax the period-by-period benchmark by linking consecutive observations
through intertemporal constraints so that inefficiency is assessed relative to a feasible adjust-
ment path rather than a sequence of static frontiers. In this setting, part of the “inefficiency”
measured by static DEA can reflect omitted lagged production effects. For example, Skevas
et al. (2012) show that once contemporaneous and lagged productivity impacts of pesticides

are modeled explicitly, estimated inefficiency declines relative to static benchmarks.

21



Beyond reduced-form adjustments, structural dynamic efficiency frameworks embed pro-
duction decisions within intertemporal optimization problems and establish a direct link
between efficiency measures and optimal dynamic behavior. For instance, Serra et al. (2011)
derive a dual relationship between a dynamic directional distance function and the under-
lying value function using the Hamilton-Jacobi-Bellman equation. Their method allows
inefficiency to be assessed relative to a dynamically optimal benchmark rather than a se-

quence of static frontiers.

4.3 Environment, By-production, and Circularity

Agricultural activities simultaneously produce marketable outputs alongside environmen-
tal by-products such as nutrient surpluses, greenhouse gas emissions, and other pollutants.
When undesirable outputs are treated as freely disposable or ignored altogether, efficiency
and productivity measures become distorted. The problem is the mis-specification of the
underlying production technology. Under free disposability, reductions in undesirable out-
puts are assumed to be costless, which contradicts physical laws and agronomic reality.
In agriculture, pollution abatement often requires additional inputs, changes in production
practices, or reductions in desirable output. As a result, conventional frontier models may
misclassify environmentally responsible behavior as technical inefficiency and overstate true

performance gaps.

4.3.1 The By-Production Framework and Material Balance

Early theoretical contributions emphasize the need for production representations that ex-
plicitly link pollution generation to the production of desirable outputs. By-production
and material-balance approaches provide a framework for modeling this jointness. In these
models, production is represented as the intersection of a “good-output” technology and a
“bad-output” technology, linked by accounting constraints that reflect conservation of matter

and energy (Forsund, 2009; Murty and Russell, 2018; Fgrsund, 2018). Undesirable outputs
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are treated as weakly disposable and arise unavoidably from production activities rather
than as independent choice variables.

Empirical agricultural applications illustrate how incorporating by-products changes con-
clusions relative to conventional frontiers. Using a by-production framework that treats nu-
trient surpluses as undesirable outputs, Hoang and Coelli (2011) show that efficiency scores
for agricultural producers decline once pollution abatement is incorporated into the tech-
nology. Dakpo and Oude Lansink (2019) apply a material-balance-based DEA model to
account for nitrogen emissions in European agriculture and find that conventional efficiency
measures overstate performance when environmental constraints are ignored. Extending this
logic to greenhouse gas emissions, Ang et al. (2022) demonstrate that a multi-equation by-
production framework is required to derive consistent shadow prices for emissions, revealing
productivity dynamics in the polluting sub-technology that conventional TFP measures fail
to capture.

The same by-product framework naturally extends to settings where by-products are
not simply “waste” but can be transformed and re-used. Wang et al. (2023) model crop
residue recycling as a joint production decision in which output expansion is inseparable
from the generation and re-use of organic by-products. In this setting, recycling activities
expand the feasible set by transforming undesirable by-products into productive inputs while
mitigation efforts alter the joint generation of outputs and emissions. Accounting for these
circular processes changes efficiency rankings relative to conventional technologies that treat
residuals as purely waste.

Recent work has also extended the by-production framework to explicitly value envi-
ronmental services. Bostian and Lundgren (2022) advocate for integrating “mitigating”
outputs—such as biodiversity or carbon storage—into productivity measures by leveraging
environmental-economic accounting principles. Kunwar et al. (2025) adapt the framework
to model carbon sequestration as a desirable output alongside undesirable GHG emissions.

Using a DEA approach on field-level data for Illinois corn growers, they derive shadow prices
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for these carbon services to assess the economic feasibility of sustainable practices. They
find that the shadow value of the carbon sequestration service provided by cover crops signif-
icantly exceeds current incentive payments, suggesting that voluntary carbon markets may
currently undervalue the sequestration benefits of adoption.

Diakosavvas and Chambers (2022) formalize this framework within the TFP context
by deriving an environmentally adjusted Solow residual that respects the material balance
principle, showing that conventional measures can confound technical change with changes
in by-product generation. Complementing this index-number perspective with a frontier-
based approach, Ancev et al. (2023) develop distance-function-based productivity indicators
defined on a technology that explicitly includes undesirable by-products. Their method treats
desirable outputs and undesirable outputs jointly, measuring productivity change relative to
an environmentally constrained technology. This avoids attributing changes in environmental
performance to “pure” productivity growth and preserves a tight link between productivity

measurement and the underlying production technology.

4.3.2 Estimation and Identification Strategies

An econometric difficulty in by-production (joint) technologies is that the same latent fac-
tors (for example, management ability, technology choice, and measurement error) often
move both market output and pollution in the same direction. If the good-output and bad-
output equations are estimated as conditionally independent, this shared unobserved hetero-
geneity is pushed into the error terms, creating correlated composite errors and potentially
confounding how policy and farm characteristics map into “economic” versus “environmen-
tal” inefficiency. Skevas (2025b) deals with this problem by estimating a multi-equation
by-production stochastic frontier and linking the composite errors from the desirable- and
undesirable-output equations with a copula, allowing the dependence structure to be esti-
mated rather than assumed away. In their Dutch dairy application, this matters because

variables such as subsidies and stocking density can influence production performance and
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environmental performance through different channels; accounting for cross-equation depen-
dence helps avoid attributing correlation-driven differences to inefficiency effects, and it can
change both coefficient estimates and the resulting farm efficiency rankings (Skevas, 2025b).

While Skevas (2025b) focuses on the statistical dependence between equations, a funda-
mental structural challenge in by-production models is identifying which constraint—production
or abatement—actually binds for a given producer. Standard single-frontier models conflate
these distinct processes, potentially biasing shadow price estimates. Addressing this, Yan
and Chambers (2025) develop a Full-Information Maximum Likelihood (FIML) framework
with endogenous regime switching to jointly estimate separable production and abatement
frontiers. Applied to Chinese hog farms, their model endogenously sorts producers into
“production-bound” or “abatement-bound” regimes based on their input mix and external
constraints. They find that single-frontier models systematically misestimate abatement
costs by averaging across these regimes, whereas the regime-switching approach recovers the
true marginal land cost of pollution control for farms where the abatement constraint is
binding.

Even when the joint structure is correctly specified, empirical performance can still hinge
on how flexibly the frontier is approximated in high-dimensional environmental settings. A
complementary methodological direction is to relax the restrictive frontier estimator while
preserving the by-production structure. Guillén et al. (2025) retain the by-production rep-
resentation of joint production but replace the conventional DEA estimator with efficiency
analysis trees, which allows the frontier to be approximated by flexible, nonlinear parti-
tions of the input—output space. By embedding machine learning estimation within the
by-production framework, their approach relaxes functional form restrictions while preserv-

ing the axiomatic properties of the technology.
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4.4 Spatial and Institutional Constraints
4.4.1 Spatial Dependence and Spillovers

Agricultural production is spatially dependent. Farms share aquifers, pest populations,
and information networks. This violates the independence assumption inherent in standard
frontier models. Methodological extensions address this by embedding a spatial weight
matrix, W, into the production structure to characterize the connectivity between producers
7 and 7.

In the parametric context, spatial spillovers are modeled by specifying the technology or
inefficiency as a function of spatially lagged variables. A general spatial stochastic frontier

can be represented as:

yi = [(x3; ) +pzwijyj + v —uy
i

where p captures the spatial autoregressive spillover of output (or productivity). Hailu and
Deaton (2016) adapt this logic to a stochastic input distance function, modeling inefficiency
u; as dependent on local farm density.

Skevas (2023) embeds spillovers directly in productivity measurement by constructing
TFP growth components that include a spatial interaction term defined over a neighbor net-
work (via a spatial weights matrix). Conceptually, each farm’s observed productivity change
is decomposed into (i) “internal” sources—technical change and efficiency change driven by
its own input—output adjustments—and (ii) an “external” component that captures expo-
sure to neighbors’ technology and performance through the spatially weighted environment,
so that part of measured TFP growth is attributed to diffusion effects rather than the farm’s
own innovation. In contrast, Skevas and Oude Lansink (2020) do not impose a spatial struc-
ture inside the DEA estimator itself: they first compute dynamic efficiency scores from a
dynamic DEA technology and then test whether these scores exhibit spatial dependence
by applying Moran’s I, showing that dynamic inefficiency is systematically clustered across

neighboring farms rather than being idiosyncratic noise.
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4.4.2 Institutional Constraints and Policy Analysis

Institutional constraints, ranging from subsidies to organizational structures, also act as ex-
ternal restrictions on the feasible input—output set, distorting the shadow prices faced by pro-
ducers. The standard methodological approach is to condition the inefficiency distribution
on policy variables. If u; represents technical inefficiency, it is specified as u; ~ DT (p;, 02),
where the location parameter p; = ¢d is a function of policy vectors ¢;. Latruffe et al. (2017)
employ this conditional approach to show that subsidies do not have a monotonic effect on
efficiency; rather, their impact is mediated by investment constraints and risk preferences.

Bernini and Galli (2024) extend the conditional-inefficiency logic by allowing policy ex-
posure to be spatially coupled. They estimate a spatial stochastic frontier for Italian agri-
culture and model both direct subsidy effects and spillovers from spatially lagged subsidies.
Their results indicate that subsidy exposure is associated with stronger environmental per-
formance while the economic effect is more mixed. Spatial spillovers are statistically impor-
tant: within-province spillovers reduce inefficiency whereas inter-province spillovers increase
economic inefficiency but decrease environmental inefficiency.

Beyond public policy, institutional constraints also arise from private organizational ar-
rangements that change incentives and effort so that observed performance gaps can reflect
agency costs rather than technology. In developing economies, the choice between vertical
integration (plantations) and contract farming (outgrowers) alters the incentive structure.
Wendimu et al. (2017) address this utilizing a generalized nonparametric kernel regression

that admits categorical variables:

E(yilzi, ¢, qf) = m(z;) +r(qf, ¢f)

where ¢ represents discrete institutional indicators (factory vs. outgrower). By avoiding
restrictive functional forms, they isolate the impact of moral hazard inherent in wage-labor

contracts, demonstrating that “inefficiency” in factory farms is structurally driven by agency
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costs rather than technological inferiority.

4.5 Uncertainty Management

Standard frontier models evaluate performance relative to an ex post benchmark that con-
ditions on realized outcomes. This assumes that producers can condition their decisions on
the state of nature that occurs. In agriculture, however, production choices are made ex
ante, before uncertainty regarding weather, pests, or prices is resolved. Input use therefore
reflects trade-offs across multiple possible states rather than optimization with respect to
the single realized outcome. From this perspective, a producer may optimally choose a plan
that appears inefficient ex post because it hedges against unfavorable states or manages
uncertainties.

Several empirical strategies address the mismatch between ex ante decision-making and ex
post efficiency benchmarks. One approach evaluates efficiency conditional on realized events
rather than imposing a single pooled frontier. Chambers et al. (2011) develop event-specific
DEA models in which production frontiers differ across observable states of nature, such as
weather conditions or pest pressure. A complementary strategy relies on dual, cost-based rep-
resentations of state-contingent technologies. Chambers (2007) and Chambers and Quiggin
(2010) estimate cost structures under state-contingent production and recover shadow prices
associated with outcomes across states of nature, showing that input choices that appear
excessive under deterministic benchmarks may be consistent with cost minimization once
uncertainty is accounted for. Another line of work reconstructs the ex ante state-contingent
technology itself. Chambers et al. (2015b) and Serra et al. (2014), combine production data
with elicited expectations or structural restrictions to recover vectors of potential outputs
associated with different states of nature. Efficiency is then assessed relative to the feasible

ex ante choice set rather than the single realized outcome.
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5 Conclusion

This paper reviews the main methodological foundations of efficiency and productivity anal-
ysis and synthesizes recent advances motivated by core features of agricultural production.
We highlight how standard parametric and nonparametric frontier benchmarks derive their
meaning from the maintained representation of technology and the behavioral and physical
constraints embedded in it. Much of the recent agricultural literature can be interpreted
as refining the benchmark to better match empirical realities: accounting for technology
heterogeneity, incorporating intertemporal adjustment and biological lags, imposing physi-
cally coherent treatments of undesirable outputs and joint production, and modeling spatial
dependence and institutional constraints that shape feasible production sets.

Several implications follow. (i) Frontier choice is a substantive modeling decision: differ-
ent representations of disposability, dynamics, and joint production define different bench-
marks and therefore different notions of inefficiency. (ii) Decompositions that separate
within-technology performance from technology gaps, and transient deviations from persis-
tent components, are useful for credible interpretation in agricultural settings. (iii) Empirical
credibility requires valid inference with the dependence structures induced by frontier meth-
ods and by spatial, temporal, and institutional linkages. (iv) The methodological frontier
is moving toward combining flexibility with structure (for example, integrating machine-
learning estimators with axiomatic technology restrictions) so that nonlinearities can be
captured without abandoning the economic meaning of the production set.

Several directions appear important for future research. First, integrative frameworks
that jointly accommodate dynamics, uncertainty, environmental jointness, and spatial inter-
actions would improve comparability across studies and strengthen economic interpretation.
Second, greater attention to identification and valid inference is essential for moving from
descriptive measurement to credible explanation, including endogeneity, selection, and finite-
sample bias in frontier and second-stage settings. Third, combining flexible function approx-

imation (including machine-learning tools) with economically motivated shape restrictions
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offers a promising route to capturing nonlinearities without sacrificing the structural mean-
ing of the production set. Overall, the field is shifting from reporting a single efficiency score
toward delivering empirically credible decompositions that explain why performance differs

across producers, space, and time under the constraints that are central to agriculture.
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