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Abstract

We use newly developed agricultural production account data comparable across 15 OECD

countries (1973-2016) to study the impact of adopting agricultural production techniques

that incorporate genetically modified organisms on a nation’s aggregate agricultural pro-

ductivity. We first develop and estimate a neoclassical production accounting framework

for agriculture that distinguishes between GMO and non-GMO agricultural production pro-

cesses. Exogenous variation of crop-specific pest shocks in geography, combined with the

timing of technology innovation in a difference-in-difference strategy, is used to identify GMO

adoption by countries. Then we follow with a series of robustness checks. The evidence sug-

gests that the impact on aggregate total factor productivity is small to nonexistent and that

the main impact of GMO adoption is to decrease the effectiveness of capital deepening in

promoting labor productivity growth.
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Introduction

Recent years have witnessed an increased interest in better understanding the nexus between

technological progress and long-term agricultural productivity growth (Caselli 2005; Gollin

et al. 2007; Restuccia et al. 2008; Adamopolous 2011; Lagakos and Waugh 2013; Gollin et

al. 2013, 2014; Adamopoulos and Restuccia 2014; Tombe 2015; Tombe 2015; Duncan et al.

2021). A protracted slowdown in agricultural productivity growth and an associated grow-

ing productivity gap across countries have heightened concerns about global food security.

This decline in agricultural productivity growth has been attributed, among other causes,

to worsening climate conditions, a deteriorated natural resource base and ecological system,

and reduced public investment in agricultural research and development (Alston, Ander-

sen and Pardey 2015; Ortiz-Bobea et al. 2018). Emerging studies suggest, however, that

biotechnological innovations in the form of genetically modified organisms (GMO) might

revolutionize agriculture and restore its productivity growth (Wheeler and Von Braun 2013;

Bailey-Serres et al. 2019; Eshed and Lippman 2019; Zaidi et al. 2019).

Little empirical evidence exists, however, on the effects that GMO techniques have on

sector-level agricultural productivity performance. Existing evidence, instead, comes mainly

from laboratory experiments, farm-level studies, and regional-level studies that suggest GMO

techniques can reduce the gap between actual and potential crop yields (Fernandez-Cornejo

et al. Fernandez-Cornejo et al.; Klümper and Qaim 2014). But contemporaneous aggregate

and cross-country comparisons report little, or even negative, yield effects in many developed

countries (NASEM 2016; Scheitrum et al. 2020; Hansen and Wingender 2023b).

Explanations for small yield response to GMOs have yet to emerge. It may be that

selection and equilibrating adjustments associated with GMO adoption may limit sector-

level impacts as labor, capital, and other resources are diverted to other tasks within the

agricultural sector. Moreover, many GMO techniques, such as Bt cotton and Roundup

Ready© soybeans are designed to control pest damage and may not enhance potential yield

and productivity in the absence of significant pest and weed pressure.

We use a newly developed data set for 15 OECD countries for the 1973-2016 period

to study the impact that GMO techniques have on aggregate agricultural productivity. We
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develop a simple structural model that distinguishes the impact of adopting GMO techniques

on aggregate agricultural productivity from that of capital deepening. Our identification

strategy combines exogenous geographical agro-climatic and ecological variation with time

variation of technological progress using a difference-in-difference strategy. We find little to

no empirical evidence that commercializing GMO techniques had a significant effect on total

factor productivity in agriculture, but those techniques do seem to improve labor productivity

in agriculture. We speculate that using GMO techniques may reduce the need for labor-

intensive tasks such as weeding and pesticide application thus improving labor productivity.

A large literature studies the social, economic, and environmental impact of GMO adop-

tion.1 It would be overly ambitious for us to summarize it all. But we can highlight three

strands that relate closely to our study. Our paper addresses similar macroeconomic issues

as those Barrows et al. (2014), Scheitrum et al. (2020) and Hansen and Wingender (2023b)

study.2 Although cast at a macro level, these studies focus on partial productivity measures

such as crop yield, harvest area, and labor intensity. Our analysis instead targets agricul-

tural total factor productivity measures based on national account statistics that attempt

to account properly for all inputs and outputs.

Our paper also uses agro-ecological variation and time variation arising from technological

progress to create instruments for GMO adoption. Similar empirical strategies were used

to examine the impacts of adopting gene-modified maize/soybean (Bustos and Ponticelli

2022) and the economic impact of adopting Green-Revolution high-yield varieties (Gollin

et al. 2021). While those studies used potential yield measures based on agro-climatic

conditions, we use exogenous geographical variation in pest shocks to create instruments

for cross-region variation. Pest shocks are more relevant to our study because most GMO

varieties are designed to be pest or pesticide resistant. Consequently, they only promise

higher yields in the presence of significant pest pressure.

Our paper also relates to the literature that investigates the role of biotechnological in-

novation in agricultural transformation and economic development. This literature includes,

1Recent economic surveys include Carpenter (2010), Klümper and Qaim (2014) and NASEM (2016).
2There are also some recent studies focused on region-level impact of GMO adoption within a single

country. See Bustos and Ponticelli (2022) for Brazil, Hendricks et al. (2019) and Lusk et al. (2018) for the

United States.
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among others, the classic work of Olmstead and Rhode (1993, 2008) and the more recent

Bustos and Ponticelli (2022) and Gollin et al. (2013, 2021). The latter show that the

adoption of high yield and GMO varieties promoted capital intensive technology progress.

Our paper adds to this literature by providing additional evidence that GMO technologies

will increase the efficiency of labor input in agricultural production from a cross-country

comparison perspective.

The paper proceeds as follows. We first present an overview of the pattern of GMO

adoption. Next we introduce a simple macroeconomic productivity accounting framework

that distinguishes between GMO and non-GMO agricultural production processes. We then

discuss our data and present the estimation results. An examination of a series of robustness

checks for the estimated model follows, and the paper then closes with a discussion of the

how our works contributes to existing knowledge of GMOs and agricultural performance.

GMO Adoption in OECD Countries

GMOs are organisms into which gene coding for desirable traits has been inserted (Qaim

2009). It can promote particular traits that include lower chemical fertilizer and pesticide

needs and better pest resistance. Since 1992, when gene-modified tobacco was introduced,

many new GMO techniques have appeared, and by 2019 the global area sown to genetically

modified varieties reached approximately 18% of arable land (190 million hectares distributed

across 29 countries, see Figure 1).
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Figure 1: Geographic Distribution of GMO adopting Countries: 2016

0 30 60 80
GM crop area (%):

Geospatial Patterns of GM Crop Distribution

Note: The darkness of the colour represents GMO adoption intensity, defined as the ratio of GMO planting

area in total crop sowing area.

Source: The data are from GMO approval database (ISAAA 2019), available online at

http://www.agropages.com/AgroData/

The United States, Canada, and Australia introduced GMO techniques in the mid 1990s,

but other OECD countries have not widely adopted them. For example, most EU countries

still ban cultivation of GMO crops even though they have invested large sums in public and

private GMO-related research and development and allow imports of GMO related commodi-

ties. As of 2019, only 10 out of the 26 OECD countries had approved the commercial use of

GMO varieties. The total OECD area grown with GMO crops accounted for approximately
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8% of its total arable land (84 million hectares) in 2019. And since 2011, OECD adoption

of GMO technologies has lagged behind that in developing countries.

Figure 2: Geographical Distribution of Average Crop Pests

0 5 10 15
Number of pest species: 

Geospatial Patterns of Pest Distribution

Note: The darkness of the colour represents seriousness of the pest shock.

Source: The data are obtained from the CABI databased on crop pest compendium, which are compiled

based on experts’ review on outbreak of crop pest using the published literature in plant pathology and

agronomy. Please refer to Moscona and Sastry (2022) for the more detailed method used to compile the

data.

GMO methods often do not promise to increase conventional crop yields when grown

under ideal conditions. Instead, GMO innovations are often meant to control weeds and

other pests while using less labor, chemicals, and other intermediate inputs. Figure 2 shows
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the geographical distribution of average crop pests across countries. Not surprisingly, it

is positively correlated with GMO adoption intensity. This may help explain why macro-

economic studies find little evidence adopting GMO techniques enhances crop yield growth,

in developed countries (NASEM 2016; Lusk et al.2018; Hansen and Wingender 2023b.

The Model

We assume that aggregate agricultural value added, Y , is a function of aggregate agricultural

capital, K, and aggregate agricultural labor, L:3

Y = AKbL1−b. (1)

Dividing both sides of (1) by L and taking natural logarithms gives:

ln y = a+ b ln k,

where a = lnA and lower-case letters are variables expressed in per unit of labor terms,

y = Y
L
and k = K

L
. Value added per unit of labor (labor productivity, LP), y, has two drivers:

agricultural productivity (AP) measured by A and capital intensity, k.4

3The assumption that aggregate agricultural production is characterized by an aggregate production

function is strong, but it is consistently maintained in the macroeconomic and development productivity

literature.
4Our data on capital and labor were constructed using hedonic adjustments over time and other di-

mensions to accommodate non-neutral technical differences. Hence, our empirical investigation focuses on

factor-neutral AP. The parameter,

A =
Y

KbL1−b
,

measures value added per unit of the aggregate input KbL1−b. In the macroeconomic growth and develop-

ment literature, which focus on returns to aggregate capital and labor, it is often called either total factor

productivity or efficiency. The former is more common in intertemporal analyses, and the latter in cross-

country analyses. In intertemporal analyses, such changes in total factor productivity are usually identified

with technical change. In cross-country analyses, differences are interpreted as country-specific productivity

differences. This definition of total factor productivity, however, differs from that employed, for example, in

official US statistics reported by the Economic Research Service, United States Department of Agriculture

(see https://www.ers.usda.gov/data-products/agricultural-productivity-in-the-u-s/). Their definition of to-

tal factor (multifactor) productivity is gross agricultural output (and not value added) divided by total

agricultural input use. To prevent confusion, we use the AP terminology.
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We assume that GMO techniques and non-GMO techniques represent different produc-

tion processes. To distinguish potential outcomes from observed outcomes, we denote by

ln y (0) = a (0) + b (0) ln k

the non-GMO production process and by

ln y (1) = a (1) + b (1) ln k

the GMO process. Let G be an indicator variable with value 1 for a GMO process and 0 for

a non-GMO process. Letting ln y denote the observed natural log of LP gives the following

relation between observed and potential outcomes:

ln y = G ln y (1) + (1−G) ln y (0)

= a (0) + b (0) ln k + αG+ βG ln k.

Here α ≡ a (1)− a (0) measures the AP difference between a GMO and non-GMO process,

and β ≡ b (1) − b (0) measures the differential between a GMO and non-GMO process on

how capital deepening affects labor-productivity growth.

To link our conceptual model to an observational setting, we use the empirical specifica-

tion:

ln yit = c0 + ui + vt + b0lnkit + αGit + βGit ln kit + ϵit. (2)

Here subscripts it denote the ith country at time t, ui is a country-specific AP effect that

controls for cross-country productivity (efficiency) differences, vt is a time-specific AP effect

that controls for time-varying productivity differences (technical change), and ϵit is a white-

noise, productivity error component.

The Data

The data are for 15 OECD countries for the period of 1973-2016.5 These data extend data

sets detailed in Ball et al. (2001, 2010) and Sheng et al. (2015). We describe the data used to

5The countries are: Belgium, Luxembourg, Germany, France, Spain, Italy, the Netherlands, the United

Kingdom, Ireland, Sweden, Denmark, Finland, the United States, Australia, and Canada.
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construct agricultural production accounts and the key variables for these OECD countries

in Annex A.6 The agricultural production account data consist of a country-by-year panel

of price and quantity indexes for three outputs (crops, livestock, and other non-separable

activities) and four inputs (capital, land, labor, and intermediate inputs) aggregated from

the commodity-level data. An important feature of the data set is that it makes agricultural

inputs and outputs consistently comparable across countries in a national accounting system

framework with an appropriate accounting for quality differences in capital (which includes

land) and labor inputs.

Our aggregate performance measure is real output value added in the farm sector (agri-

culture, excluding forestry and fisheries). It is calculated using gross agricultural output

value (the sum of output of agricultural goods and the output of goods and services from

non-separable secondary activities) minus the total value of intermediate inputs, deflated by

the relative price of aggregate agricultural output. We evaluate agricultural output from the

producer perspective. That is, subsidies are added to and indirect taxes are subtracted from

market values. In those countries where a forfeit system prevails, the difference between

payments and refunds of the tax on value added (or VAT) is included in the value of output.

Our model considers two aggregate inputs, labor and capital. Other inputs are aggregated

into a single factor, intermediate inputs, whose value is then subtracted from aggregate

output to create value added. The labor input is measured by aggregating hours worked

by hired and self-employed (and unpaid family workers) workers using the corresponding

compensation as weights. The compensation of hired farm workers is defined as the average

hourly wage plus the value of perquisites and employer contributions to social insurance. The

compensation of self-employed workers is derived by using the accounting identity where the

value of total output is equal to total factor outlay. Quality adjustments have been made to

account for the difference in age, education and gender of rural labor force across countries

over time.

Capital consists of land and depreciable capital assets including non-dwelling buildings

and structures, plant and machinery, and transportation vehicles. Capital input (or capital

services) is derived from capital stocks based on the constant efficiency model with a set of

6Interested readers can also refer to the public release of dataset on the website: https://icapproject.com/
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assumptions to model variations in actual service lives (Ball et al. 2008, 2001; Sheng et al.

2020). Capital stock of depreciable assets is constructed as a weighted sum of past invest-

ments for each type of asset. The weights correspond to the relative efficiencies of capital

goods of different ages, so that the weighted components of capital stock have the same effi-

ciency. Capital stock of land is constructed as the ratio of the value of land of different types

in agriculture to the corresponding price index. The price index of land is estimated using

hedonic methods that allow for spatial differences in 26 land characteristics (or quality) and

their change over time based on the data of more than 3500 states/regions. This treatment

incorporates important, but difficult to measure factors, such as environmental endowments,

natural resource endowments, and soil characteristics into the capital measure.

We measure GMO adoption by constructing a time-varying dummy for each country

using the data on GMO approval events from International Services for the Acquisition

of Agri-biotech Application (ISAAA 2019).7 The dummy variable takes the value one in

a country for each year after the first GMO event has been commercially adopted and

zero otherwise. Between 1973 and 2016, 7 out of the 15 countries studied approved GMO

commercial use. They are the United States (1994), Canada (1995), Australia (1995), Spain

(1998), France (1998), Germany (2000), and Sweden (2010). 8 Additionally, we also use

GMO adoption intensity, defined as GMO cropping areas divided by the total cropping area,

as an alternative measure of GMO adoption. We treat the dummy for GMO approval as

a preferred measure for GMO adoption because of two reasons. One reason is that the

measure is more consistent with our theoretical framework as the dummy for GMO approval

represents an external shock.9 The other reason is that using the dummy for GMO approval

7We only include field crops in our analysis, whereby we exclude GMO varieties of a few specialty crops,

such as eggplant and papaya. This is no severe limitation, as cotton, maize, soybean and canola account for

more than 98 % of global GMO crop in commercialization.
8Considering that France and Germany have stopped the use of GMOs in field in 2008 and 2012, we also

define another dummy variables that allow the two countries to be in the control group either after they

disapproved GMOs or for the whole period to account for the impact of their exiting from GMO adoption

countries as robustness checks
9The commercial approval of GMO use is usually the result of a complex socio-economic process that

balances public concerns about its safety (and related regulatory hurdles for their commercialization) and

industrial support for adoption.
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helps to avoid the measurement problem caused by inaccurate statistics on the planting area

of GMO crops. Figure 3 illustrates the GMO adoption time line.

Figure 3: Time line for GMO adoption of the 15 OECD countries

Note: The data are from GMO approval database (ISAAA 2019), available online at

http://www.agropages.com/AgroData/.

Finally, we measure the pest shock (as the key instrumental variable) by using the pres-

ence of crop-specific pests and pathogens (CPPs) based on the data on the global distribution

and host-plant specificity of all known CPPs, including viruses, bacteria, parasitic plants,

insects and fungi. They are estimated to reduce annual global agricultural output by 50-80

% (Oerke and Dehne 2004), and CPP resistance has been a key focus of GMO technology de-

velopment. The measure is compiled by Moscona and Sastry (2022) using expert reviews of

published literature in plant pathology and agronomy, which reflects the global distribution

of plant ecosystem threats in ecological sciences (Dong and Ronald 2019). Other variables

in use are described in Appendix B.
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Econometric Issues and Estimation Strategies

In estimating the structural model, we face a number of econometric challenges. First, GMO

adoption is not randomly assigned across countries, which raises the potential for sample-

selection issues. Second, a country’s decision on GMO adoption, its capital investment and

labor allocation, likely depend on common macroeconomic factors, public attitudes, and

other variables not included in our model. Without a proper identification strategy, our esti-

mates may suffer from omitted-variable or reverse-causality problems. Third, GMO adoption

across countries varies over time, making it difficult to compare its effect between the pre- and

post- adoption periods. Without properly accounting for these time-varying GMO adoption

shocks, conventional estimation methods are not guaranteed to yield interpretable causal

parameters. Fourth, some countries, France and Germany, revoked GMO approval after ini-

tially granting it. Ignoring such behaviour could contaminate the estimated effects of GMO

adoption. Finally, countries adopted GMO techniques with different intensities at different

time periods.

This section discusses an estimation strategy to address these econometric issues.10 Our

first step is to construct a common support sample. Because our data are not drawn from

a randomized trial, the potential for sample-selection bias exists between GMO-adopting

and non-adopting countries. To accommodate it, we assume that the probability of assign-

ment to the GMO group versus the non-GMO group is bounded away from 0 and 1 given

X, Pr(G = 1|X) ∈ (0, 1); and that the data are consistent with the conditional indepen-

dence condition that G⊥(ln y|X), where “⊥” denotes the independence relation between two

random variables and X denotes a vector of covariates.

Our empirical representation of Pr(G = 1|X) ∈ (0, 1) assumes a logit form where X

consists of two covariates: the price of intermediate inputs used in agricultural production

and per capita gross domestic production (GDP). Using the price of intermediate inputs to

help identify a country’s choice of GMO adoption is reasonable because we work in value-

added framework and GMO adoption usually involves herbicide-tolerant and insect/bacteria-

resistant varieties that are correlated with the use of intermediate inputs such as herbicides

10Please refer to Annex B for a more detailed discussion on the related econometric results.
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and pesticides. Per capita GDP captures a country’s income and research capacity and

public awareness of biotechnology, but it will not directly affect agricultural LP and AP.

The estimated logit model is summarized in Annex Table B1. We use the estimated

propensity scores described, for example, in Imbens and Rubin (2015, see in particular Sec-

tions 15.3, 15.3.3,18.4-5) to implement the one-to-one propensity score matching technique

to match GMO adopting and non-adopting countries in 1993 immediately before the first

GMO variety has been commercialized in the United States. Briefly, in that period for each

country that has adopted GMO techniques, we match it with the non-adopting country that

is closest to it in terms of the distance between the linearized propensity scores. The match-

ing process produces a “matched sample” with 403 observations. A set of parallel trend tests

for both the full sample and the “matched sample” are conducted and compared to ensure

that GMO adopting countries share the common growing trend of agricultural LP and AP

with non-GMO adopting countries before GMO varieties have been commercially planted.11

We next address the potential endogeneity problem. Labor choice, capital choice and

GMO adoption may be affected by factors such as agricultural policies, attitudes towards

GMOs and biotechnology and other macroeconomic variates not encompassed in our model.

To remove such endogenous components, we use a two-stage least squares (2SLS) approach.

Specifically, we construct an instrument for GMO adoption by using two sources of exoge-

nous variation: cross-country variation in crop-specific pest shocks in the early 1990s and

the differentiated timing of technology innovation across countries. The strategy used for

constructing the instrument was initially developed by Nunn and Qian (2011), who use agro-

climatic suitability to identify the impact of the potato on European development following

the Colombian Exchange. More recently, Bustos et al. (2016) used a similar strategy to

identify the effect of adopting genetically modified soybean and maize in Brazil, while Gollin

et al. (2021) use agroclimatic suitability to estimate the impact of high-yielding varieties

on economic growth in developing countries for the post-green revolution era. We use the

crop-specific pest shocks across countries before 1990 to capture cross-country differences

in potential gains from adopting GMO technologies. Because the cross-country differences

in pest shocks are exogenously determined and most GMO varieties are designed to control

11The detailed results are reported in Annex B.
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pests, they play an important role in identifying the timing and intensity of GMO adoption.

We construct our instrument for GMO adoption and intensity in two steps. The first uses

the geographical variation of crop-specific pest shocks and the different timing of technology

progress across countries to predict adoption intensity for each of the four major GMO crops

j (namely, cotton, soybean, maize and canola) based on the following equation:

GMOSj
it =

2016∑
k=1973

(
αj
k · pestshk

j
i · yearkt

)
+

2016∑
k=1973

θk · yearkt +
N∑
c=2

δc · countryci + uj
it

(3)

where GMOSj
it is the GMO adoption intensity for crop j in country i at time period

t and pestshkj
i is the occurrence of pests (sensitive to Bt toxin) for crop j across all land

suitable for agriculture within a country before 1990. Because GMO varieties were bred

and distributed across countries differently over time, we interact pestshkj
i with a full set of

time-period fixed effects,
∑2016

k=1973 α
j
k ∗ pestshk

j
i . We also add year dummies, yeart, country

fixed effects, countryi, to the regression. The residual is denoted by uj
it.

In the second step, we multiply the predicted GMO adoption rates for each crop from

equation (3), ˆGMOSj
it, by its share in total cropping area in 1970. We then sum across crops

to obtain the aggregate country-level predicted GMO adoption rate.

pGMOSit =
J∑

j=1

ˆGMOSj
it · croppingarea

j
i1970∑J

j=1 cropingarea1970
, (4)

The predicted GMO adoption rate, pGMOSit, is our instrumental variable for the GMO

adoption dummy and intensity. The relationship between the actual and the predicted GMO

intensity for the year 2016 is shown in Figure B2. There is a strong positive correlation (i.e.

93.4%). The correlations in other time periods between 1994 and 2016 are similar.

As the instrument for capital intensity, we use the lagged relative price of capital for-

mation compared to labor input at the national level. This is a valid instrument because

agriculture is relatively a small sector among the OECD countries. In our sample, GDP

share of agricultural sector in the overall economy is less than 3%. Thus, the choice of

capital and labor input depends on the relative price of capital to labor for the economy.
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We sourced these two measures from the Penn World Table 10.1, and used the price level of

USA in 2005 as the baseline.12 Finally, interaction between the two instrumental variables

is used to identify the interaction between capital intensity and GMO adoption intensity.

With our instrumental variables in hand, we estimate the following first-stage equations:

Git = λ01 + λ11pGMOSit + λ21PATit + vt + ui + eit (5)

ln kit = λ02 + λ12RPit + vt + ui + eit (6)

Git ln kit = λ03 + λ13pGMOSit ·RPit + vt + ui + eit (7)

where pGMOSit is the predicted GMO adoption rate, which is the excluded instrument

for actual GMO adoption rate in Equation (3). RPit refers to the relative price of capital

to labor. In order to improve identification, we add the accumulated number of GMO

varieties and patents (PATit) in Equation (5). The remaining variables are defined as above.

Predicted capital intensity, GMO adoption, and their interaction obtained from the first-

stage regressions are used in the second-stage estimation.

Parameter estimates in 2SLS regressions with generated instruments are asymptotically

distributed as in standard 2SLS regressions. The standard errors of the 2SLS estimate of α,

b and β are thus asymptotically valid. In addition to the baseline 2SLS model represented

by (3) and (4), we also conduct a set of robustness checks. In particular, we follow Gollin

et al. (2021) to use the potential crop-specific yield gap between 1970-1990 and 1980-2000,

determined by the cross-country difference in agro-climatic conditions, to approximate the

potential difference in GMO adoption capacities across countries.

Our third step is to address the potential “negative” weight problem associated with ap-

plying the traditional TWFE model to multiple time-period shocks across countries. Recent

studies show that the traditional TWFE model might not yield interpretable causal param-

eters, when external shocks are staggered (Sant’Anna and Zhao 2020; de Chaisemartin and

D’Haultfoeuille 2020; Kirill Borusyak and Spiess 2021; Jonathan Roth and Poe 2022). In

our case, GMO adoption occurs across countries at different time periods so that the average

effect of GMO adoption may be contaminated as a result of the “negative” weight problem.

12Penn World Table 10.01 (https://www.rug.nl/ggdc/productivity/pwt/) with price level of USA (GDPo)

in 2005 as the base.
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We address this problem by following Sant’Anna and Zhao (2020), Callaway and Sant’Anna

(2021), and Gardner (2021) to develop the difference-in-difference estimation procedure with

multiple time periods. Specifically, take the estimate of α in Equation (2) as an example.

We assume that l and k represent different cohorts for GMO adoption, the average impact

of GMO adoption can be decomposed into:

α̂ =
∑
k ̸=U

skU α̂kU +
∑
k ̸=U

∑
l>k

[skklα̂
k
kl + slklα̂

l
kl]

where α̂ refers to average effect of GMO adoption to be estimated, l stands for early GMO

adopting cohort and k stands for the late GMO adopting cohort, and

α̂kU = (ln y
POST (k)

k − ln y
PRE(k)

k )− (ln y
POST (k)

U − ln y
PRE(k)

U )

α̂k
kl = (ln y

MID(k,l)

k − ln y
PRE(k)

k )− (ln y
MID(k,l)

U − ln y
PRE(k)

U )

α̂l
kl = (ln y

POST (l)

k − ln y
MID(k,l)

k )− (ln y
POST (l)

U − ln y
MID(k,l)

U )

represent the AP effect from comparing early adopted with non-adopted countries, the AP

effect from comparing late adopted with non-adopted countries, and the AP effect from

comparing early and late adopting countries before l. Subscripts “PRE”, “POST” and

“MID” denote the stage of GMO adoption. The weights, s(.), are proportional to timing

group sizes and the variance of the treatment dummy in each pair. When using a two-step

procedure, we can also estimate β in a similar way.

We split our sample by different cohorts defined by l and k, and estimate effects of GMO

adoption by using the TWFE model for each cohort dynamically. The estimated α̂’s and

β̂’s are then aggregated with corresponding weights for average effect of GMO adoption. We

use two cross checks proposed by Callaway and Sant’Anna (2021) and Gardner (2021) re-

spectively. Both the Bacon test proposed by Goodman-Bacon et al. (2019) and the negative

weight test proposed by de Chaisemartin and D’Haultfoeuille (2020) have been conducted

to examine the potential impact of the negative-weight problem on our estimation.13 Addi-

tionally, we also use an approach developed by de Chaisemartin and D’Haultfoeuille (2020)

to assess the impact of France and Germany revoking GMO approval in 2008 and 2012

respectively. We first estimate the average effect of GMO adoption by taking account of

13Please refer to the robustness check section for detailed estimation results.
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the France and Germany’s revocation of approval.14 Then, we decompose average effects of

GMO adoption into two components.15

Finally, the intensity with which GMOs are adopted across countries also varies. For

example, the average GMO adoption intensity in the United States and Canada for the

period of 1994-2016 are 45% and 23% respectively, while the adoption intensity for most EU

adopters is less than 1%. Assigning equal weights to countries with different GMO adoption

intensities in the regression analysis could bias the estimated impact of GMO adoption.

We accommodate this problem by using the exponential of GMO adoption intensity (as

regression weights) for each country to adjust the difference in GMO adoption intensity

across countries.

Empirical Analysis

Table 1 presents summary sample statistics on agricultural LP, y, and capital intensity,

k, segregated according to eventual adoption strategy. Figure 4 presents a box-plot of y

also segregated over eventual adoption strategy. The vertical line between 1993 and 1994

separates the “pre-GMO” period from the period after the first commercial adoption of GMO

techniques. LP for both adopters and non-adopters exhibits an upward trend over the entire

sample period, although its growth appears slower for both after 1993. On average, LP for

GMO adopters is approximately 10% higher than that for non-adopters. But the dispersion

of LP for non-adopters is greater than that for GMO adopters. For example, the countries

with the highest LPs are non-adopters and with few exceptions so are the countries with the

lowest LPs.

14In this exercise, the dummy of GMO adoption for France and Germany is assigned to be zero after 2008

and 2012 correspondingly.
15In Annex B, we also conduct an exercise by treating France and Germany as non-GMO countries

throughout the whole period and re-estimate the effect of GMO adoption as a robustness check.
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Table 1: Summary Statistics on labor productivity (y) and capital intensity (k)

segregated by GMO adoption strategy

ln y ln k Num. of Obs.

non-GMO adopting countries -0.665 -1.430 352

(0.759) (0.671)

GMO adopting countries -0.560 -1.296 308

(0.594) (0.626)

pre-GMO adoption period (GMO countries) -0.859 -1.473 179

(0.535) (0.612)

post-GMO adoption period (GMO countries) -0.146 -1.051 129

(0.430) (0.600)

Note: ln y refers to the natural log of agricultural labor productivity, and ln k refers to the natural log of

capital intensity. Standard deviations are reported in paratheses.

Figure 4: Box plot of the natural log of agricultural labor productivity (y) segre-

gated by GMO adoption strategy

Note: Outliers are excluded for each year.

Figure 5 presents the sample scatter diagram for ln y and ln k. Red triangles denote

observations for countries that eventually adopt GMO techniques and black dots non-GMO
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countries. The solid red curved represents the LOWESS smoothed regression plot for the

GMO countries. The dotted black curve shows the smoothed regression plot for the non-

GMO countries. Both smoothed plots exhibit a non-negative slope that decreases as capital

intensity increases. At low capital-intensity levels, GMO countries exhibit a higher labor

productivity than non-GMO countries. This tendency reverses itself at the highest levels

of capital intensity. The data cloud formed by the red triangles appears to exhibit less

dispersion and more severe diminishing returns to capital (or, K) than that formed by the

black dots.

Figure 5: Scatter and LOWESS smoothed regression between agricultural labor

productivity (y) and capital intensity (or capital-labor ratio, k) in natural log

segregated by GMO adoption strategy

Note: The shades around the two fit lines represent the 95% confidence interval for LOWESS smooth

regressions respectively.

Using both the full sample and the PS-matched sample, we first conduct the parallel

trend tests for agricultural LP based on 15 period lags and 6 period leads. The test results
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are presented in Figure 6. Based on the PS-matched sample, the F-statistic for the difference

in agricultural LP growing trend between GMO and non-GMO countries over the pre-shock

period jointly being equal to zero is 1.26 (p-value 39.22 %), which implies that the parallel

trend test is passed at 5 % level. The comparable result for the full sample is 74.94 (p-

value 0 %). The difference in the estimated F-statistics suggests that that the neighborhood

matching approach alleviated the potential sample selection bias problem.16

16A more thorough parallel trend test with the consideration of the potential “negative weight” problem

is also conducted and the results are shown in Figure 8, which also corroborates the finding that there is the

parallel trend between GMO and non-GMO countries based on the PS-matched sample.
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Figure 6: Parallel Trend Test of agricultural labor productivity (y): Full sample

vs. PS-matched sample

(a) Full sample (95% confidence interval)

(b) PS-matched sample (95% confidence interval)

Note: the parallel trend tests are conducted for the natural log of agricultural labor productivity (ln y) in a

setting that contains 15 period lags and 6 periods leads.

Table 2 reports statistical estimates of b0, α, and β obtained from the TWFE model using

the OLS and 2SLS estimation method. The first column reports α estimated as the mean

LP difference between GMO and non-GMO countries that accounts for country-specific and

time-specific differences in AP while ignoring the contribution of k. The estimated difference

is positive but small, .17 log points, and imprecisely estimated.
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Table 2: Estimated impact of GMO adoption: OLS and 2SLS

All Sample All Sample PS Match PS Match PS Match+W

OLS OLS OLS 2SLS 2SLS

(1) (2) (3) (4) (5)

Dependent variable: lny

1973-v̄ -1.380*** 0.183 0.177 - -

(0.079) (0.167) (0.274) - -

ln kit (or b0) - 0.743*** 0.708*** 0.764*** 0.764***

- (0.037) (0.054) (0.230) (0.140)

Git (or α ) 0.174 -0.019 0.071 -0.091 -0.091

(0.114) (0.130) (0.076) (0.326) (0.196)

Git ∗ ln kit (or β ) - -0.138* -0.105** -0.377** -0.377**

- (0.077) (0.050) (0.165) (0.099)

Number of Observations 660 660 403 403 403

R-squared 0.791 0.891 0.878 0.851 0.851

Number of countries 15 15 15 15 15

Note: Robust standard errors are reported in parentheses, and and “***”, “**” and “*” denote statistical

significance at the 1%, 5% and 10% levels. Other controls also include the Cluster Fixed Effects.

The second column reports OLS estimates of b0, α, and β. The estimate for α becomes

negative but remains imprecisely estimated. The OLS estimate for β is negative, about -.14

log points, and statistically significant at the 10% confidence level.

Column 3 repeats the regression analysis summarized in Column 2 using the common sup-

port sample (see Annex B for details) instead of the entire country panel. Column 4 reports

parameters estimated using 2SLS in place of OLS applied to the common support sample,

and Column 5 the 2SLS estimates obtained from the common support sample weighted to ac-

commodate potential heteroskedasticity associated with different GMO adoption intensities

across countries.

Although magnitudes differ, the qualitative regression results reported in Columns 3 to

5 are similar. Variation in capital intensity (k) is statistically significant in explaining LP

variation across the original sample and the common support sample. Only the OLS estimate

of α for the common support sample is positive. But it remains quite small, about .07 log
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points, and is imprecisely estimated. Both 2SLS estimates for α are negative, ranging from

-0.02 to -.09. Nevertheless, they remain insignificant at all traditional levels of confidence.

The estimated β is uniformly negative for all three models and precisely estimated. The

estimates from the 2SLS versions are roughly three times larger (in absolute value terms)

than the OLS estimates.

In Annex C, we report parameter estimates for vt − v̄, each period’s deviation from the

average AP for the non-GMO technology. Setting v1973 = 1 gives an estimate of approxi-

mately 1.42 for v̄ using either version of the 2SLS estimates. Using this normalization, we

calculated the vt for the non-GMO technology using the 2SLS results from the matched but

unweighted sample. Figure 7 portrays the results by the solid piece-wise linear curve. The

pattern that emerges is a drop in period-specific AP during the First Oil Crisis of the early

1970s and then virtually uninterrupted growth until 1993.17 In 1994 and 1995, the first two

years of commercial GMO use, estimated vt dropped approximately 10% and then leveled

off, on average, for the balance of the sample period. The dotted piece-wise linear segment

emanating from the solid curve depicts the impact, captured by our 2SLS estimate of α, of

adopting GMO techniques in 1994 (the year in which they were introduced by the United

States). The empirical results suggest that adopting GMO techniques in 1994 would have

driven period-specific productivity below 1973 levels before 2012. The other dotted lines

depict the associated confidence intervals at 95 % level.

17The perceptible dip in 1983-1984 reflects the US policy-driven PIK program that vastly curbed agricul-

tural production.
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Figure 7: Counterfactual analysis on GMO adoption impact: Agricultural Productivity (AP)

Note: the solid and dashed trend lines are drawn by using the estimated time-specific agricultural

productivity (AP) effect (vt) that represents time-varying productivity shocks (or technology progress)

without and with the consideration of the impact of GMO adoption respectively. The lines in light colour

provide the 95% confidence intervals.

While informative, the estimated α and β by using the traditional TWFE model is likely

to be biased due to the potential “negative” weight problem discussed earlier. To assess the

potential impact of “negative” weight, we performed the Goodman-Bacon (2020) test and the

negative weight test proposed by de Chaisemartin and D’Haultfoeuille (2020). The results

show that only 24% of the units in our regressions are ever treated, which implies that the

problem is mitigated by the majority clean control.18 Nevertheless, we still estimate α and β

by using the approaches proposed by Callaway and Sant’Anna (2021) and Gardner(2021) and

report the results in Table 3. Columns (1) and (2) of Table 3 provide the estimated α and β

using the Callaway and Sant’Anna (2021) approach where non-adoption and not-yet adoption

countries are used as control groups respectively, while columns (3) provides the estimated α

18See Annex B for the detailed Goodman-Bacon (2020) test results.
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and β using the Gardner(2021) approach.19 Throughout all model specifications, estimated

α is negative ranging from -0.095 to -0.021 but imprecisely estimated, while estimated β is

negative ranging from -0.199 to -0.110 and precisely estimated. These results support the

findings of the OLS and 2SLS estimates.

Table 3: Estimated impact of GMO adoption: CSDID (2020) and Gardner (2021)

CSDID (2021) CSDID (2021) Gardner (2021)

Never Not-yet All

(1) (2) (3)

Dependent variable: lny

Git (or α ) -0.029 -0.021 -0.096

(0.060) (0.067) (0.126)

Git ∗ lnkit (or β ) -0.114** -0.110* -0.199**

(0.070) (0.061) (0.078)

Number of Observations 357 412 403

Notes: In all regressions, we use IMP weights to aggregate the estimated treatment effects by cohort,

and both country fixed effect and year effects have been accounted for. Other controls also include the

Cluster Fixed Effects. Robust standard errors are reported in parentheses, and “***”, “**” and “*”

denote statistical significance at the 1%, 5% and 10% levels.

Finally, we estimate the impact of GMO adoption on agricultural labor productivity when

taking into account of France and Germany’s revocation of GMO approval. The estimated

results obtained by using the de Chaisemartin and D’Haultfoeuille (2020) approach are

reported in Table 4. Column (1) of Table 4 reports estimated average α and β when we

consider the exit of Germany and France, while Column (2) and (3) decompose the average

estimate into the roll-in and roll-out effects. On average, the estimated α is -0.635 and

imprecisely estimated, while the estimated β is -0.171 and precisely estimated at 5%. When

we only consider the impact of the first approval for GMOs by France and Germany in

1998 and 2000, the estimated α is -0.937 and imprecisely estimated at 10% level, while the

estimated β is -0.159 and precisely estimated at 10%. The results imply that our findings

19In addition to estimate average effect, we have also conduct the eventual analyses to consider their

dynamic changes and heterogeneous effects across cohorts. We report the corresponding dynamic estimates

in the robustness check section.
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Table 4: Estimated impact of GMO adoption when considering Roll-out of France

and Germany

Average Roll-in effect Roll-out effect

(1) (2) (3)

Dependent variable: lny

Git (or α ) -0.635 -0.937 -0.091

(0.773) (1.000) (0.409)

Git ∗ lnkit (or β ) -0.171** -0.159* -0.186*

(0.097) (0.114) (0.094)

Number of Observations 451 451 451

Notes: We use the approach proposed by de Chaisemartin and D’Haultfoeuille (2020). In all regressions,

both country fixed effects and year effects have been accounted for. Other controls also include the

Cluster Fixed Effects. Robust standard errors are reported in parentheses, and “***”, “**” and “*”

denote statistical significance at the 1%, 5% and 10% levels.

of insignificant AP effect and significant negative effect on capital deepening are robust to

accounting for French and German revocation.

As an alternative way to estimate the productivity effect of GMO adoption, we replicated

the regression analyses using a direct measure of AP. Specifically, we constructed an aggregate

of the K and L measures, denoted by X, and then measured AP by Y/X.20 The newly

constructed AP was used as the dependent variable and the resulting representation is

ln (Y/X) = a (0) + αG (8)

The estimated results from (8) are summarized in Table 5.21 The α estimate from OLS

applied to the matched sample is positive and statistically different from zero at the 5%

level. But, when we consider the potential endogeneity problem and the “negative weight”

problem, the estimated results become unstable. Average 2SLS estimates for the matched

20The procedures for constructing the X aggregate follow those detailed in our Data section and in Annex

A.
21The pretrend tests for the constructed AP are conducted by using both the full sample and the PS-

matched sample, and the results are reported in Annex B. Based on the PS-matched sample, the pre-trend

test has been passed which suggests that both GMO adoption and non-GMO adoption countries share the

common trend before 1994.
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sample is 0.091, while average estimates from the CSDID and Gardner (2021) analyses range

from 0.043 to 0.133. All estimators are imprecisely estimated. For each of the estimated

versions, the time-specific variates, vt − v̄ explained the bulk of the variation in AP. Thus,

some support exists for the hypothesis that GMO adoption raises AP, but it disappears (and

is reversed) when consistent estimation procedures are used.

Table 5: Estimated impact of GMO adoption on agricultural productivity (AP,

measured as value-added, Y, per unit of X): OLS and 2SLS

All Sample PS Match PS Match PS Match+W Never

Treated

Notyet

Treated

Gardner(2021)

OLS OLS 2SLS 2SLS CSDID CSDID TSDID

(1) (2) (3) (4) (5) (6) (7)

Dependent variable: lnAP

Constant -1.402*** -1.299*** - - - -

(0.082) (0.131) - - - -

Git (or α ) 0.136 0.215** 0.091 0.091 0.043 0.092 0.133

(0.095) (0.097) (0.290) (0.156) (0.075) (0.072) (0.089)

Number of Observations 660 403 403 403 403 403 403

R-squared 0.717 0.709 0.701 0.701 - - -

Number of countries 15 15 15 15 15 15 15

Notes: In all regressions, both country fixed effects and year effects have been accounted for. The

instrumental variable in use is same as that used for GMO adoption in Table 2. Other controls also

include the Cluster Fixed Effects. Robust standard errors are reported in parentheses, and “***”, “**”

and “*” denote statistical significance at the 1%, 5% and 10% levels.

Robustness Checks

This section reports a series of robustness checks. The first check investigated the impact

of GMO adoption when (2) and (8) were re-estimated after replacing the Git variable by

GMOSit, where GMOSit is country i’s GMO adoption intensity at time period t measured

as actual planted area of GMO varieties divided by total cropping area of the country. The

forms to be estimated are:

ln yit = c0 + ui + vt + b0lnkit + αGMOSit + βGMOSit ln kit + ϵit. (9)
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and

lnAPit = c0 + ui + vt + αGMOSit + ϵit. (10)

Table 6 summarizes the estimation results. These estimated coefficients have a different

interpretation than those in Table 2. Nevertheless, the qualitative implications are similar.

Higher intensities of GMO adoption are associated with lower or insignificant AP changes

and a significantly lower marginal productivity of capital.22

Table 6: Estimated impact of GMO adoption: GMO intensity (GMOS) replacing

G (dummy for GMO)

ln y ln y lnAP lnAP

OLS+PSW 2SLS+PSW OLS+PSW 2SLS+PSW

(1) (2) (3) (4)

Dependent variable: ln y or lnAP

1973-v 0.178 - -1.319*** -

(0.234) - (0.136) -

ln k 0.716*** 0.478*** - -

(0.120) (0.152) - -

GMOS -0.960 -2.118*** 0.203 0.093

(0.631) (0.777) (0.162) (0.194)

ln k ·GMOS -1.078** -1.989*** - -

(0.488) (0.625) - -

Number of Observations 403 403 403 403

R-squared 0.873 0.858 0.687 0.686

Number of countries 15 15 15 15

Notes: In all regressions, both country fixed effects and year effects have been accounted for. Other

controls also include the Cluster Fixed Effects. Robust standard errors are reported in parentheses, and

“***”, “**” and “*” denote statistical significance at the 1%, 5% and 10% levels.

Next we used the procedures developed by Autor (2003) and Beck et al. (2010) to examine

the intertemporal behavior of GMO adoption and its impact on agricultural LP and AP. The

22In practice, there are lack of accurate statistics on the unreported (or illegal) plantation of GMO crops

in GMO adopting countries. For example, many GMO adopting countries only treat GMO crop as its GMO

varieties being more than 5 %. Thus, it is possible that using GMO intensity to approximate the adoption

of GMO technology may underestimate its productivity effects.
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corresponding empirical models are:

ln yit = c0 + ui + vt + b0lnkit +
17∑

j=−21

αjG
j
it +

17∑
j=−21

βjG
j
it ln k

j
it + ϵit.

and

lnAPit = c0 + ui + vt +
17∑

j=−21

αjG
j
it + ϵit.

Here G−j
it equals one for country i in the jth year before it adopted the GMO technology

and zero otherwise, and G+j
it equals one for the jth year after GMO adoption and zero

otherwise. This dynamic analysis yields interpretable causal parameters that accommodate

variation in treatment timing and heterogeneity of treatment effects (de Chaisemartin and

D’Haultfoeuille, 2020; Callaway and Sant’Anna, 2021). Given the recent challenges to TWFE

designs in economics, we also examined average estimates of α and β aggregated by calendar

years using the approach developed by Callaway and Sant’Anna (2021). The results are

summarized and compared in panels (a)-(c) of Figure 8. For most years after GMO adoption,

the estimated coefficients, αt, are not significantly different from zero at the .05 level. After

1994, they follow a pattern of being positive, then negative. The estimated coefficients, βt,

are consistently negative after 1994. The results are consistent and robust to various model

specifications.
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Figure 8: Event analyses of the impact of GMO adoption on agricultural labor

productivity (LP) and agricultural productivity (AP): Various Models
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(a) Estimated impact on agricultural labor productivity, LP (G)
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(b) Estimated impact on agricultural labor productivity, LP (G ∗ ln k)
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(c) Estimated impact on agricultural productivity, AP (G)
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Note: To analyse the dynamic impact of GMO adoption on agricultural labor productivity (LP), we use

four models including TWFE and another three other models following Callaway and Sant’Anna (2021),

Gardner (2021) and de Chaisemartin and D’Haultfoeuille (2020). To analyse dynamic impact of GMO

adoption on agricultural productivity (AP), we use six models including all the four models plus Sun and

Abraham (2021) and BJS (2020).

Research and development (R&D) investment in agriculture, weather conditions, and

crop share in agricultural output can affect agricultural productivity growth. Lusk et al.

(2018) report that soil characteristics and weather conditions play important roles in GMO

adoption decisions and determining their yield effects. Scheitrum et al. (2020) and Hansen

and Wingender (2023b) found that GMO adoption would enhance the harvest areas of GMO

crops. To examine the impacts of such productivity shifters, we incorporated three in our

models (2) and (8).23 These measured variates are public agricultural R&D knowledge

stock constructed using data from Fuglie et al. (2022), the percentage of crop output in total

agricultural output value, and the Oury aridity index.24 The re-specified models are

ln yit = c0 + ui + vt + b0lnkit + αGit + βGit ln kit + γZit + ϵit. (11)

and

lnAPit = c0 + ui + vt + αGit + γZit + ϵit. (12)

where Zit is a vector representing the three productivity shifters. Table 7 reports estimation

results. The estimated impact of GMO adoption on AP, as measured by α, is positive but

imprecise. Otherwise, our original results are qualitatively robust to these modeling changes.

In practice, average productivity impact of GMO adoption across countries comes from

the aggregation of productivity impact of GMO adoption in each country. Given the limited

number of countries in our sample, there is a concern that our finding of insignificant overall

AP effect could result from the limited use of GMO technologies in the EU countries. To

test this point, we use the regression control method (RCM) to examine the impact of GMO

adoption on LP and AP in each GMO adopting country (Diamond et al. 2010; Craig et al.

23We thank Keith Fuglie for suggesting this analysis.
24The data on total precipitation and average temperature used to construct the Oury measures are from

the World Bank Group’s Climate Change Knowledge Portal.
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Table 7: Estimated impact of GMO adoption: With additional control variables

G G GMOS GMOS

ln y lnAP ln y lnAP

(1) (2) (3) (4)

Dependent variable: ln y or lnAP

G -0.100 0.109 - -

(0.205) (0.155) - -

ln k 0.722*** - - -

(0.152) - - -

G ∗ ln k - - -

(0.102) - - -

GMOS - - -2.159** 0.080

- - (0.861) (0.086)

ln k - - 0.509** -

- - (0.204) -

GMOS ∗ ln k - - -2.087*** -

- - (0.694) -

R&D Stock -0.090 0.104 -0.024 0.091

(0.086) (0.073) (0.080) (0.071)

Crop V alue Share 0.614 -0.423 0.551 -0.379

(0.445) (0.303) (0.419) (0.343)

Oury Index 0.013 0.022 -0.003 0.015

(0.070) (0.063) (0.061) (0.065)

Number of Observations 403 403 403 403

R-squared 0.847 0.708 0.862 0.690

Number of countries 15 15 15 15

Note: The results reported in this table is obtained from Models (11) and (12), in which we control

three additional variables. They include public knowledge stock (R&D Stock), the proportion of total

value of cropping enterprises in total agriculture (Crop value share) and the Oury index for climatic

conditions (defined as total rainfall dividing by average temperature). In all regressions, we use the 2SLS

as the estimation method and both country fixed effects and year effects have been accounted for. Other

controls also include the Cluster Fixed Effects. Robust standard errors are reported in parentheses, and

“***”, “**” and “*” denote statistical significance at the 1%, 5% and 10% levels.

2018; Li et al. 2022). The essential idea of RCM is to use the combination of LP and AP for

all the non-GMO adopting countries and their determinants to construct the counterfactual

for the GMO adopting country through fitting the pre-treatment period, and then predict
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their post-treatment path had GMO technology not been adopted. Through comparing the

predicted and the actual path, one can obtain average treatment effects of GMO adoption.

Specifically, the baseline model can be written as:

ln y1t = θ0 + θ1 ln y
NG
t + ϵ1t.

and

lnAP1t = θ0 + θ1 lnAP
NG
t + ϵ1t.

where ln y1t and lnAPit refer to LP and AP of one GMO adoption country in year t, ln yNG
t

and lnAPNG
t refer to LP and AP of non-GMO adoption countries and the covariantes

from all GMO adoption countries in the pre-treatment period, such that ( ln y2t,...,ln ynt,

ln k1t,...,ln knt, Z1t, ..., Znt ) and (lnAP2t, ..., lnAPnt, Z1t, ..., Znt) and Zit is a vector of control

variables. Other variables are defined same as before. The estimation results are shown in

Table 8. Among seven GMO adopting countries, three (including Canada, Germany and

Spain) obtained more than 10% of positive AP effect and four (including Canada, Australia,

Germany and Sweden) obtained more than 10% of positive LP effects (with the control of

capital intensity). However, most of these positive LP and AP effects are observed in the

EU countries where GMO planting intensities are relatively low. In contrast, average AP

effect of GMO adoption is only 2.8 % in the US, where GMO intensity has reached 70 %,

while average LP effect is negative. Our result suggests that a higher GMO adoption inten-

sity (and a longer adoption period) does not necessarily induce a larger LP and AP effect.

Additionally, GMO adoption has equal opportunity to affect LP and AP in EU countries as

it does in non-EU countries. Meanwhile, the significant difference in LP and AP effects of

GMO adoption also implies that capital deepening may play different roles in affecting LP

across countries when GMO technology is adopted.

Finally, it might be argued that our results could be sensitive to different identification

strategies. To resolve the problem, we perform the robustness check by using some alterna-

tive instrumental variables to identify GMO adoption. In particular, we use the change in

potential yield gap across countries due to agroclimatic variation in geography between the
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Table 8: Estimated impact of GMO adoption on agricultural labor productivity

(LP) and agricultural productivity (AP) by country: The regression control

method (RCM)

ATE CVMSE Post/Pre MSPE

ratio

ATE CVMSE Post/Pre MSPE

ratio

ln y ln y ln y lnAP lnAP lnAP

(1) (2) (3) (4) (5) (6)

Dependent variable: ln y or lnAP

US -0.122 0.013 0.588 0.028 0.014 0.824

CA 0.277 0.021 0.765 0.252 0.014 0.235

AU 0.282 0.006 0.471 -0.142 0.009 0.882

FR -0.190 0.001 0.294 -0.264 0.001 0.059

DE 1.225 0.007 0.059 0.314 0.011 0.294

ES 0.048 0.015 0.765 0.204 0.036 0.882

SE 0.118 0.009 0.235 0.059 0.009 0.118

Number of donor pool countries 8 8 8 8 8 8

Notes: We use the regression control method to estimate the impact of GMO adoption on agricultural

labor productivity (LP) and agricultural productivity (AP) for each country that has approved the

commercial use of GMO technology. All the 8 non-GMO adoption countries are used as the donor pool,

and they are also used for the placebo tests. The probability of obtaining a post/pre-treatment MSPS

ratio is reported to inform the significance of the estimated productivity effects. In the first three columns

(or LP model), we also control capital intensity.

1960-1980 period and the 1980-2000 period to approximate the cross-country difference in

GMO adoption following Gollin et al. (2021). They are then interacted with the time fixed

effects to pick up potential trend change in predicted agro-ecological condition based GMO

adoption to generate the instrument for GMO adoption. The estimated results using the

alternative instrumental variables corroborate the findings that we have obtained.25

Discussion: Existing Evidence and Our Findings

Our empirical results suggest that average GMO adopters experienced little to no statisti-

cally perceptible AP gains after adoption. The main impact of GMO adoption is to reduce

the potential for capital deepening to enhance LP. The absence of a positive GMO impact

on AP and the suggestion that introducing GMOs lowered AP may seem paradoxical, espe-

25The estimation results are available upon request from the authors.
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cially given the existence of positive micro-level evidence. But it is not unprecedented and

echoes Solow’s famous epigram that “You can see the computer age everywhere but in the

productivity statistics.”

The results reported here raise similar issues. What constitutes a technological revolution

lies in the eye of the beholder. But our analysis reveals little to no evidence that adopting

GMO techniques have revolutionized AP among developed countries, implying that the

microeconomic literature (which shows a substantial positive productivity impact) could

result from user-selection bias. Our empirical results also indicate that the period-specific

component of AP slumped dramatically with the introduction of GMOs in the mid 1990s

and largely failed to return to pre 1994 levels afterwards.

Other studies using different data and different techniques have raised similar concerns,

albeit in other contexts, for the United States, the international leader in adopting GMO

techniques. Andersen et al. (2018) concluded on the basis of an extensive time-series analysis

that US agricultural multifactor productivity grew at an average annual rate of 1.16% over

the 1990-2007 period as opposed to an average annual rate of 1.42% over the 1910-1990

period. The years 1994-2007 overlap the post-GMO-adoption period for the United States,

and the Andersen et al. (2018) estimated .26 decline is consistent with our 2SLS estimates of

a .09 decline, despite the differences in data and techniques.26 Similarly, in a study focused

on the effects of climate change Ortiz-Bobea et al. (2018) using a state-level panel covering

the period of 1960-2004, documented a slowing and increased dispersion of US agricultural

productivity growth in the last decade of the 20th century. Neither the Andersen et al.

(2018) study nor the Ortiz-Bobea et al. (2018) compared the performance of adopters and

non-adopters of GMO techniques.

Fernandez-Cornejo and McBride (2002) examined the economic impact of US GMO adop-

tion prior to 2002. They found that the impact of GMO adoption varied substantially by

crop and technical process. In particular, adopting herbicide-tolerant soybeans did not have

a significant impact by 2002 even though adoption rates had reached 45% by then. The find-

26The “productivity” measure used in Andersen et al. (2018) is multifactor productivity, which measures

aggregate agricultural output per unit of an aggregate of all inputs, and not value added per unit of aggregated

capital and labor.
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ing is also confirmed by NASEM (2016), which also examined yield impact of GMO adoption

on maize and cotton. Lusk et al. (2017) used a panel of US county-level data between 1980

and 2015 to examine the impact of GMO adoption on maize yield and found no yield trend

change after GMO adoption. So did Hendricks et al. (2019). They both attributed the

limited effect of GMO adoption in the US to changing weather patterns and different soil

characteristics across locations. At a global level, Hansen and Wingender (2023a), apply-

ing a difference-in-difference strategy to four crops (including maize, soybean, cotton and

canola) of 120 countries, found no effect of GMO adoption on maize and soybean yields in

countries with climates and income similar to that of the US. Chambers and Sheng (2022)

also used the same US state-level agricultural productivity data set as Ortiz-Bobea et al.

(2018) with matching data on state-level GMO adoption rates to investigate the impact of

GMO adoption on state-level agricultural productivity.27 Their estimated α analogue to

ours is positive but not statistically different from zero at all traditional confidence levels,

even if state-level weather conditions and soil characteristics are properly controlled. They

also report that the primary statistically-perceptible impact of GMO adoption is a lower

marginal productivity of capital.28

The story that emerges is that the most perceptible difference between GMO adopters

and non-adopters is in how capital deepening affects LP growth. Capital deepening is less

effective in promoting LP growth among developed countries for GMO adopters than for

non-adopters. For relatively labor rich countries, the implied increased marginal return to

labor can enhance LP even if AP remains constant or declines.29 Six of the seven adopting

27The productivity accounts underlying the US state-level agricultural productivity data were constructed

using different assumptions on aggregate agricultural technology than used in constructing our data. Where

our data, following traditional productivity accounting methods impose constant returns to scale, the US

state-level data do not.
28Because Chambers and Sheng (2022) do not impose constant returns in their analysis, the marginal

productivity of capital and labor are captured by separate parameter estimates. For the specification,

Y = AKbLc, their point estimates of b0 and c0 (for non adopters) are .525 (significantly different from zero

at all traditional confidence levels) and .125 (not significantly different from zero at all traditional confidence

levels), respectively.
29For all the countries in our panel, observed k is less than one. Therefore, under constant returns, a lower

elasticity of output for K is associated with a higher LP.
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countries adopted GMO techniques prior to 2001 (United States, Canada, Australia, France,

Spain, and Germany). The seventh, Sweden, did so in 2010. Using our 2SLS results for

the matched but unweighted sample, our point estimates of the average annual LP change

associated with adopting GMO techniques for the 2000-2016 period are (expressed in log

points): United States (0.29), Canada (.47), Australia (-.08), France (.07), Spain (.14), and

Germany (.33).30 Sweden adopted GMO techniques in 2010 and our point estimate of that

adoption’s impact on LP for 2016 is -.15. So, according to these estimates, only Australia

and Sweden experienced declines in both AP and LP, the rest experienced drops in AP but

increases in LP.

Lacking further study, we can only speculate on the biological and mechanical forces

driving these results, at least at the sector level. But existing work on the agricultural trans-

formation offers some insights. For much of the last half of the 20th century, the stylized

explanation for agricultural technical progress was the Hayami-Ruttan induced-innovation

model (Hayami and Ruttan 1971). Technical progress is driven by market price signals

reflecting relative factor scarcities. Thus, the land-abundant, labor-scarce United States

developed land and capital intensive production techniques, while labor-rich countries such

as Japan adopted labor-intensive techniques. Olmstead and Rhode (1993; 2008) have ar-

gued that historical factor price ratios moved in a direction counter to the Hayami-Ruttan

hypothesis. And they conclude that settlement of Western lands, adapting crop patterns,

and biological innovation better explain American agricultural development. Where Hayami

and Ruttan (1971) and Olmstead and Rhode (1993; 2008) disagree on the role of induced

innovation, they agree that location-specific factors play an important role in affecting pro-

ductivity growth. Our finding that the main impact of GMO adoption on LP appears to be

a weakening of the impact of capital deepening as a productivity driver is consonant with

the Olmstead-Rhode hypothesis. We speculate that using GMO techniques may reduce the

need for labor-intensive tasks such as weeding and pesticide application thus improving labor

productivity.

Remarkably large agricultural LP differences exist between the richest and poorest coun-

30All of these changes are calculated treating k for each time period as predetermined. These numbers

measure difference in LP levels and not growth rates.
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tries. For example, Tombe (2015) reports that agricultural LP in the 10 richest countries

is 100 times that in the 10 poorest.31 Restuccia et al. (2008) report a more conservative,

but still large, factor of 78 between countries in the 90% and 10 % deciles. Because employ-

ment in poorer countries is much more concentrated in agriculture than in richer countries,

reducing that agricultural productivity gap could be crucial to lifting their living standards

to those of the poorer countries. Caselli (2005) calculations suggest, for example, that rais-

ing agricultural LP in the poorest countries to those in the United States would virtually

eliminate world income inequality.

The empirical result that adopting GMO techniques can enhance LP for countries with

labor-rich agricultural sectors suggests that GMO adoption might help eliminate the large

labor productivity gap. While compelling, caveats exist. For example, the countries in our

sample with the highest average LP are, in rank order, the Netherlands, Belgium, France, and

the United States. Two non-adopters and two adopters. On average, Belgium, France, and

the United States have roughly the same capital intensity (approximately, .26 to .30), while

that in the Netherlands is considerably higher (.51). Average LP in France is approximately

93% of that in Belgium and 63% of that in the Netherlands.32 The comparable US LP

percentages are 84% and 79%. Moreover, when France adopted GMOs in 1998, its LP

was approximately 77% of the Netherlands. In 2016, France’s LP stood at 44% of the

Netherlands. GMO adoption was accompanied by an increase and not a narrowing of the

LP gap between France and the Netherlands. 33 Thus, while GMO adoption might enhance

agricultural LP by increasing the marginal productivity of labor, our analysis suggests that

more important drivers of LP are those captured by country-specific fixed effects.34

Finally, while many explanations, including farm size, transportation costs, and subsistence-

driven labor selection effects and trade enhancing labor market distortions have been offered

31To be compared with a factor of 12 outside of agriculture.
32There is, however, considerable variability inter-annual variability.
33Such numbers, of course, are always subject to “cherry picking” and it is likely to be related with factors

other than GMO adoption. For example, the Netherlands experienced a sharp drop in LP between 2010 and

2011 while France did not. If the same comparison were made for 2007 after which France revoked the use

of Bt corn, France’s LP was approximately 74% of the Netherlands.
34For example, it’s important to understand that the United States has perhaps the most diverse agricul-

tural sector, while other countries such as Belgium and Netherlands are much more specialized.
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for the measured productivity gap (Adamopoulos and Restuccia 2014; Adamopoulos 2011;

Lagakos and Waugh 2013; Tombe 2015), Restuccia et al. (2008) and Duncan et al. (2021)

have suggested that existing market frictions retard the adoption of modern intermediate in-

puts. If true, the latter would suggest that similar frictions would inhibit effective adoption of

GMO techniques that are often embodied in genetically altered seeds and other intermediate

inputs.
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Annex A. Production Accounts for Agriculture

The newly constructed production accounts for agriculture are designed for cross-country

comparison of the relative levels of agricultural performance. It contains information used

to measure outputs, inputs and total factor productivity of 15 OECD countries based on the

valued model for the 1973-2016 period.

A.1 Output and intermediate input

Our measure of agricultural output includes deliveries to final demand and to intermediate

demand in the nonfarm sector. We also include deliveries to intermediate farm demand so

long as these deliveries are intended for different production activities (e.g., crop production

intended for use in animal feeding).

An unconventional aspect of our measure of total output is the inclusion of output from

“inseparable” secondary activities. These activities are defined as activities whose costs

cannot be observed separately from those of the primary agricultural activity. Two types of

secondary activities are distinguished. The first represents a continuation of the agricultural

activity, such as the processing and packaging of agricultural products on the farm, while

services relating to agricultural production, such as machine services for hire, are typical of

the second.

The total output of the sector represents the sum of output of agricultural goods and

the output of goods and services from secondary activities. We evaluate industry output

from the point of view of the producer; that is, subsidies are added and indirect taxes

are subtracted from market values.1 In those countries where a forfeit system prevails, the

difference between payments and refunds of the tax on value added (or VAT) is also included

in the value of output.

Intermediate input consists of all goods and services consumed during the accounting

1Among the European countries, output is valued at basic prices. The “basic price” is the price received

by the producer from the purchaser for a unit of a good or service produced as output minus any tax paid

on that unit as a consequence of its production or sale (i.e., taxes on production) plus any subsidy received

on that unit as a consequence of its production or sale (i.e., subsidies on products) (Eurostat, 2000, p. 43).
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period, excluding fixed capital. Those goods and services that are produced and consumed

within the agricultural sector are included in intermediate input so long as they also en-

ter the farm output accounts. The value of intermediate input includes taxes (other than

the deductible VAT) less subsidies, whether paid to suppliers of intermediate goods or to

agricultural producers.2

We construct Tornqvist or translog price indices and implicit quantities of output and

intermediate input for each of the 17 OECD countries over the period 1973 to 2016. To

measure relative levels of output and intermediate input, we construct multilateral translog

price indices for the year 2005 (see Caves, Christensen, and Diewert, 1982). These price

indices are referred to in the literature as purchasing power parities (PPP). We extend these

indices backward and forward in time using the intertemporal translog indices. This allows

us to construct panel data that can be used for both cross-section and time series analysis.

A.2 Capital input

The measurement of capital input begins with data on the stock of capital and capital rental

price for each asset type in each country.3 At each point of time the stock of capital, say

K(T ), is the sum of all past investments, say I(T − τ), weighted by the relative efficiencies

of capital goods of each age τ , say S(τ).

K(T ) =
∞∑
τ=0

S(τ)I(T − τ) (A1)

To estimate capital stock, we must introduce an explicit description of the decline in effi-

ciency. This function, S, may be expressed in terms of two parameters, the service life of the

2The data on output and intermediate input for the European countries are from the Economic Ac-

counts for Agriculture NewCronos database http://epp.eurostat.ec.europe.eu/. Comparable data for the

United States, Canada and Australia are available from the Economic Research Service, US Department of

Agriculture, Statistics Canada, and the Australian Bureau of Statistics, respectively.
3Data on investment for the European countries are from Capital Stock Data for the European

Union (Beutel, 1997). The series was extended through 2011 using Eurostat’s NewCronos database

http://europa.eu.int/comm/eurostat/newcronos/. Data for the United States are from Fixed Reproducible

Tangible Wealth in the United States (U.S. Dept. of Commerce), and the data for Canada and Australia

come from Statistics of Canada and Australian Bureau of Agricultural and Resource Economics and Sciences.
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asset L and a curvature or decay parameter β. One possible form of the efficiency function

is given by

S(τ) = (L− τ)/(L− βτ), (0 ≤ τ ≤ L)

S(τ) = 0, (τ < L)
(A2)

This function is a form of a rectangular hyperbola that provides a general model incor-

porating several types of depreciation as special cases.

The value of β is restricted only to values less than or equal to one. For values of β

greater than zero, the function S approaches zero at an increasing rate. For values less than

zero, S approaches zero at a decreasing rate.

Little empirical evidence is available to suggest a precise value for β. However, two studies

(Penson et al. 1977; Romain et al. 1987) provide evidence that efficiency decay occurs more

rapidly in the later years of service, corresponding to a value of β in the zero-one interval

(Beutel, 1997; Baldwin et al. 2015). In this study, we assume that the efficiency of a structure

declines very slowly over most of its service life. The decay parameter for machinery and

transportation equipment assumes that the decline in efficiency is more uniformly distributed

over the asset’s service life. Given these assumptions, the final β values chosen were 0.75 for

structures and 0.5 for machinery and equipment.

The other variable in the efficiency function is the asset life-time L. For each asset type,

there exists some mean service life L̄ around which there exists a distribution of actual service

lives. In order to determine the amount of capital available for production, the actual service

lives and the relative frequency of assets with these lives must be determined. It is assumed

that this distribution may be accurately depicted by the normal distribution truncated at

points two standard deviations before and after the mean service life.

Once the frequency of a true service life L is known, the decay function for that particular

service life is calculated using the assumed value of β. This process is repeated for all other

possible values of L. An aggregate efficiency function is then constructed as a weighted sum

of individual efficiency functions using as weights the frequency of occurrence. This function

not only reflects changes in efficiency, but also the discard distribution around the mean

service life.4

4For further discussion, see Ball et al. (2008).
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Firms undertaking investment decisions should add to capital stock if the present value

of the net revenue generated by an additional unit of capital exceeds the purchase price of

the asset. Stated algebraically, this condition is

∞∑
τ=1

(P
∂Y

∂K
−WK

∂Rt

∂K
)(1 + r)−t > WK (A3)

where P is the price of output, WK is the price paid for a new unit of capital, Rt is the

replacement investment, and r is the real discount rate.

To maximize net worth, firms will add to capital stock until Equation (A3) holds as an

equality

P =
∂Y

∂K
= rWK +

∞∑
τ=1

WK
∂Rt

∂K
(1 + r)−t = c (A4)

where c is the implicit rental price of capital.

The rental price consists of two components. The first term, rWK , represents the oppor-

tunity cost associated with the initial investment. The second term,
∑∞

τ=1 WK
∂Rt

∂K
(1 + r)−t,

is the present value of the cost of all future replacements required to maintain the productive

capacity of the capital stock.

We can simplify the expression for the rental price in the following way. Let F denote

the present value of the stream of capacity depreciation on one unit of capital according to

the mortality distribution m

F =
∞∑
τ=1

m(τ)(1 + r)−t (A5)

where m(τ) = −[S(τ)− S(τ − 1)], (τ = 1, 2, ..., L). It can be shown that

∞∑
τ=1

WK
∂Rt

∂K
(1 + r)−t =

F

1− F
(A6)

so that

c =
rWK

1− F
(A7)

The real rate of return r in Equation (A7) is calculated as the nominal yield on govern-

ment bonds less the rate of inflation as measured by the implicit deflator for gross domestic
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product.35 An ex ante rate is obtained by expressing observed real rates as an ARIMA pro-

cess.36 We then calculate F holding the required real rate of return constant for that vintage

of capital goods. In this way, implicit rental prices c are calculated for each asset type.

Although we estimate the decline in efficiency of capital goods for each component of

capital input separately for all 17 countries, we assume that the relative efficiency of new

capital goods is the same in each country. The appropriate purchasing power parity for new

capital goods is the purchasing power parity for the corresponding component of investment

goods output (OECD, 1999, p. 62). To obtain the purchasing power parity for capital input,

we multiply the purchasing power parity for investment goods for any country by the ratio

of the price of capital input in that country relative to the United States.

A.3 Land input

To estimate the stock of land in each country, we construct translog price indices of land

in farms. The stock of land is then constructed implicitly as the ratio of the value of land

in farms to the translog price index. The rental price is obtained using Equations (A7)

assuming zero replacement.

Spatial differences in land characteristics or quality prevent the direct comparison of

observed prices. To account for these differences, indexes of relative prices of land are

constructed using hedonic regression methods in which a good is viewed as a bundle of

characteristics that contribute to the productivity derived from its use. According to the

hedonic framework the price of a good represents the valuation of the characteristics “that

are bundled in it,” and each characteristic is valued by its “implicit” price (Rosen, 1974).

These prices are not observed directly and must be estimated from the hedonic price function.

A hedonic price function expresses the price of a good or service as a function of the

quantities of the characteristics it embodies. Thus, the hedonic price function for land may

35The nominal rate was taken to be the average annual yield over all maturities.
36Ex ante real rates are expressed as an AR(1) process. We use this specification after examining the

correlation coefficients for autocorrelation, partial and inverse autocorrelation and performing the unit root

and white noise tests. We centered each time series by subtracting its sample mean. The analysis was

performed on the centered data.
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be expressed as

W (λ) =
∑
n

anXn(λn) +
∑
d

γdDd + ϵ (A8)

where W (λ) represents the price of land, X is a vector of characteristics, and D is a vector

of other variables.

Sanchez et al. (2003) introduced a soil taxonomy that could be used to identify attributes

relevant for crop production. A complete list of attributes, along with definitions, is provided

in Sanchez et al. (2003). The attributes most common in major agricultural countries

are loamy topsoil (particularly in the United States, Portugal and Spain) and moisture

stress (particularly in Australia, Greece, Italy, Portugal and Spain). In areas with moisture

stress, agriculture is not possible without irrigation. Hence, irrigation (i.e., the percentage of

cropland that is irrigated) is included as a separate variable. We also include the interaction

between moisture stress and irrigation in the hedonic regression.

In addition to environmental attributes, we also include a “population accessibility” score

for each region in each country. This index is constructed using a gravity model of urban

development, which provided a measure of accessibility to population concentrations (Shi

et al., 1997). A gravity index accounts for both population density and distance from that

population. The index increases as population increases and/or distance from the population

center decreases.

Other variables (denoted by D) are also included in the hedonic equation, and their

selection depends not only on the underlying theory but also on the objectives of the study.

If the main objective of the study is to obtain price indexes adjusted for quality, as in our

case, the only variables that should be included in D are country dummy variables, which

will capture all price effects other than quality. After allowing for differences in the levels

of the characteristics, the part of the price difference not accounted for by the included

characteristics will be reflected in the country dummy coefficients.

Finally, economic theory places few if any restrictions on the functional form of the he-

donic price function. In this study, we adopt a generalized linear form, where the dependent

variable and each of the continuous independent variables is represented by the Box-Cox

transformation. This is a mathematical expression that assumes a different functional form
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depending on the transformation parameter, and which can assume both linear and loga-

rithmic forms, as well as intermediate nonlinear functional forms.

Ordinarily, estimating a Box-Cox model is straightforward. However, the fact that our

model contains dichotomous variables with values equal to zero at some point(s) makes for

a more difficult application of this procedure. Since the Box-Cox transformation involves

logarithms, and the logarithm of zero is not defined, one cannot simply fit the Box-Cox

model to the data. In response to this problem, we do not transform those quality variables

with values of zero.

Several methods have been used to calculate price indexes adjusted for quality using

hedonic functions, including characteristics prices and dummy variable techniques. The

latter is used in this study because it is simpler and because Triplett (1989) has provided

extensive evidence of the robustness of the hedonic price indexes to the method of calculation.

Using the dummy variable approach, quality-adjusted price indexes are calculated directly

from the coefficients on the country dummy variables D in the hedonic regression.

A.4 Labor input

Data on labor input in agriculture consist of hours worked disaggregated by hired and self-

employed and unpaid family workers (Eurostat, 2000). Compensation of hired farm workers

is defined as the average hourly wage plus the value of perquisites and employer contributions

to social insurance. The compensation of self-employed workers is not directly observable.

These data are derived using the accounting identify where the value of total product is

equal to total factor outlay. Our index of labor input will then reflect differences in marginal

products of hired and self-employed and unpaid family workers.

A.5 Other variables

We measure agricultural R&D by using the knowledge stock of public R&D investment in

agriculture of the OECD countries estimated by Fuglie et al. (2022), based on the data of

historical public expenditure in agricultural R&D. A gamma distribution with a time lag

structure of 50 years are used to capture the time lag effects of agricultural R&D investment.
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We measure climate condition by using the Oury (1965) index, which is defined as total

precipitation dividing by 1.07temprature. Temperature is measured in degrees Celsius and

precipitation in millimeters. The data on precipitation and temperature are sourced from

the World Bank Group’s Climate Change Knolwedge Portal. We measure agricultural output

structure by using the value share of crop products in total output value. The data on each

agricultural output of each commodity are sourced from agricultural production account that

we have developed for the 15 OECD countries.
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Annex B: Econometric Issues and Related Results

In this annex, we provide detailed discussion on how we resolve the four potential econometric

issues mentioned in the main context.

First, it is to resolve the sample selection bias issue. Because our data are not drawn

from a randomized trial, the potential for sample-selection bias exists. To accommodate it,

we assume that: the data are consistent with the conditional independence. Our empirical

representation of Pr(G = 1|X) ∈ (0, 1) assumes a logit form where X consists of two

covariates: the price of intermediate inputs used in agricultural production and per capita

gross domestic production.

The estimated logit model is summarized in Annex Table B1. We use the estimated

propensity scores to implement the one-to-one propensity score matching technique to match

GMO approved and non-approved countries described, for example, in Imbens and Rubin

(2015, see in particular Sections 15.3, 15.3.3,18.4-5). Briefly, in the pre-shock period for each

country that has adopted GMO techniques we match it with the non-adopting country that is

closest to it in terms of the distance between the linearized propensity scores. The matching

process produces a “matched sample” (or common support sample) with 403 observations.

Parallel trend tests for ALP and AP with 15 years of lag and 6 years in lead using both the

“matched sample” are conducted, and the results are reported in Figure B1.
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Table B1: First-stage logit model for the propensity score (PS) matching

Sub-sample (pre-1994) All sample period

(1) (2)

Dependent variable: Gi

GDP per capita (ln) 1.323** 0.375

(0.567) (0.408)

Relative price of intermediate inputs (US 1995=1) -2.950*** -2.900***

(0.573) (0.391)

Constant -11.597** -2.252

(5.704) (4.092)

Year Dummies Yes Yes

Likelihood Ratio χ2 (22/45) 47.45 67.33

Rseudo R-squared 0.109 0.074

Number of Observations 315 660

Notes: Robust standard errors in parentheses, and “ ∗ ∗ ∗ ”p < 0.01, “ ∗ ∗”p < 0.05, “ ∗ ”p < 0.1.
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Figure B1: The parallel trend test for GMO adoption using the propensity score

matched sample: 95% level

(a) Parallel trend test for ALP

(b) Parallel trend test for AP

Note: we use 21 periods lags and 22 periods leads in this parallel trend test, and the F-statistics are 1.79

(p-value 24.81%) for ALP and 1.93 (p-value 22.16%) for AP compared to those obtained from using the full

sample 1125.12 (p-value 0.00%) and 52.12(p-value 0.00%).

Second, it is about resolving the potential endogenous problem. Because labor choice,

capital choice, and GMO adoption may be affected by factors such as agricultural policies,
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attitudes towards GMOs and biotechnology and macroeconomic shocks not encompassed in

our model, we use a 2SLS procedure to accommodate the presence of missing explanatory

factors. The instrument for GMO adoption and intensity in the first-stage regressions is the

predicted GMO adoption rate. The instrument is generated by combining the cross-region

variation of crop-specific pest shocks in the early 1990s with time variation arising from

GMO adoption (for GMO adoption). The identification strategy has been previously used

by Bustos and Ponticelli (2022) to identify the adoption of gene-modified corn and soybean

in Brazil and by Gollin et al. (2021) to identify the adoption of high-yielding varieties in

the green revolution era. Figure B2 shows the scatter plot between actual GMO adoption

and predicted GMO adoption in the year 2016 (corresponding to the change between 1994

and 2016 as GMO adoption is zero for all countries before 1994). There is a strong positive

correlation between actual GMO adoption and predicted GMO adoption rates.

Figure B2: Actual and predicted GMO adoption (in the year 2016)

For capital intensity, we use the lagged relative price of capital formation at the national

level (for capital intensity) as the instrument, and the interaction between the two instru-

mental variables for the interaction term between GMO adoption and capital intensity. All
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three regressions were estimated in the panel data regression with the control of country

fixed effects. The first-stage results are summarized in Table B2.

Table B2: The first-stage regression results for the 2SLS models

Model (4) and (5)

(1) (2) (3)

Dependent variable: lnkit Git Git ∗ lnkit
Relative price of capital to labor 0.554*** -0.462*** 1.283***

(0.132) (0.147) (0.215)

predicted GMO adoption rate 0.050 -1.429*** -0.241

(0.257) (0.328) (0.487)

Number of patents applicants (10 years ahead) - 0.000 0.000

- (0.000) (0.000)

Number of GMO events (10 years ahead) - 0.003** -0.011***

- (0.001) (0.003)

Interactions between capital price and pre-

dicted GMO adoption rate (10 years ahead)

-0.197 0.897*** -1.134***

(0.263) (0.217) (0.389)

Country-specific effects Yes Yes Yes

Year dummies Yes Yes Yes

F-test of excluded instruments 29.02 23.55 69.56

Sanderson-Windmeijer multivariate F test 33.84 10.90 14.73

Kleibergen-Paap rk LM stat. 23.076

Weak identification test 9.793

Hansen J statistic (over-identification test 7.286

Notes: Robust standard errors in parentheses, and “ ∗ ∗ ∗ ”p < 0.01, “ ∗ ∗”p < 0.05, “ ∗ ”p < 0.1.

Third, it is to cope with the “negative weight” problem in the traditional TWFE model.

Estimators based on the staggered shocks are sometimes difficult to interpret because of a

potential “negative” weight problem. This could cause causing the traditional TWFE model
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not to yield interpretable α and β in our framework. To resolve this problem, we conducted

the Goodman-Bacon (2018) test to examine how the important the potential “negative”

weight problem is in our study. As is shown in Figure B3, the test results show that: for the

ALP regression, there are totally 129 ATTs under the common trends assumption, among

which 98 ATTs receive a positive weight and 31 ATTs receive a negative weight. In other

words, only 24% of the units in our regressions received negative weights, so the problem is

mitigated by the many clean controls. Moreover, we also conducted the test proposed by de

Chaisemartin and D’Haultfoeuille (2020) and the test result shows that the null hypothesis

that the estimated impact is comparable with a DGP is not rejected at 5%. Nevertheless,

we also follow Sant’Anna and Zhao (2020), Callaway and Sant’Anna (2021) and Gardner

(2021) to provide alternative estimates of average α and β and their aggregation by groups

and calendar years. A similar result also applies to the AP regression.
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Figure B3: Goodman-Bacan Test for “negative weight”: LP and AP

(a) Test for LP

(b) Test for AP

While France and Germany approve the adoption of GMO in 1998 and 2000, they are not

important GMO adopters compared to other EU countries (i.e. Spain and Sweden). Both

countries, in effect, banned the use of GMOs in 2008 and 2012 respectively, and as a conse-

quence, GMO crops never represented a significant amount of acreage in these countries. To

address this problem, we use the approach proposed by de Chaise-martin and D’Haultfoeuille
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(2020) to assess the impact of France and Germany revoking GMO approval. Additionally,

we also conduct an alternative analysis that treated France and Germany as non-GMO coun-

tries throughout the whole period. The results are reported in Annex Table B3. Generally,

our findings of negative and insignificant impact of GMO adoption on AP and significant

negative impact of GMO adoption on capital deepening still hold when both France and

Germany are treated as non-GMO countries.

Table B3: Estimation Results from the Model Treating France and Germany as

Non-GMO Countries

G GMOS

ln y lnY/X ln y lnY/X

(1) (2) (3) (4)

Dependent variable: ln y or lnY/X

Git (or α) 0.031 0.020 - -

(0.103) (0.108) - -

ln kit or (b0) 0.532*** - - -

(0.094) - - -

Git ∗ ln kit or (β) -0.202*** - - -

(0.059) - - -

GMOS - - -2.822*** -0.233**

- - (1.087) (0.096)

ln k - - 0.416** -

- - (0.197) -

ln k ∗GMOS - - -2.297*** -

- - (0.831) -

Number of Observations 403 403 403 403

R-squared 0.873 0.695 0.858 0.692

Number of countries 15 15 15 15

Notes: Robust standard errors are in parentheses, and “ ∗ ∗ ∗ ”p < 0.01, “ ∗ ∗”p < 0.05, “ ∗ ”p < 0.1.

Finally, we also use GMO intensity as the independent variable (replacing the dummy for

GMO adoption) and re-do the exercise as in the robustness check. This analysis is similar

as a generalized difference-in-difference procedure, which not only accounts for the potential

exit of some countries but also accounts for the intensity of GMO adoption intensity and its

impact on agricultural LP and AP.
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In Table B4, we also report the estimation results using alternative IVs.

Table B4: Estimation Results using Alternative Instrumental Variables: Potential

Yield Gap

G GMOS

ln y lnY/X ln y lnY/X

(1) (2) (3) (4)

Dependent variable: ln y or lnY/X

Git (or α) -0.085 0.090 - -

(0.188) (0.156) - -

ln kit (or b0) 0.763*** - - -

(0.140) - - -

Git ∗ ln kit (or β) -0.374*** - - -

(0.095) - - -

GMOS - - -2.120*** 0.095

- - (0.778) (0.193)

ln k - - 0.480*** -

- - (0.153) -

ln k ∗GMOS - - -1.992*** -

- - (0.625) -

Number of Observations 403 403 403 403

R-squared 0.851 0.700 0.858 0.686

Number of countries 15 15 15 15

Notes: The instrumental variables used in this table is the potential yield gap estimated by using FAO

GERD data. Robust standard errors are in parentheses, and “∗∗∗”p < 0.01, “∗∗”p < 0.05, “∗”p < 0.1.
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Annex C: Time-specific AP Change and Its Impact

In this section, we report the full set of estimates for those summarized in Table 2 (Annex

Table C1), Table 5 (Annex Table C2) and Table 6 (Annex Table C3) in the main context.
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Table C1: Complete estimation results LP dependent variable: OLS and 2SLS

All Sample All Sample PS Match PS Match PS Match+W

OLS OLS OLS 2SLS 2SLS

(1) (2) (3) (4) (5)

Dependent variable: lny

ln kit (or b0) 0.174 -0.019 0.071 -0.091 -0.091

(0.114) (0.130) (0.076) (0.326) (0.196)

Git ∗ ln kit (or α) 0.743*** 0.708*** 0.764*** 0.764***

(0.087) (0.051) (0.230) (0.140)

Git ∗ ln kit (or β) -0.138* -0.105** -0.377** -0.377***

(0.077) (0.050) (0.165) (0.099)

year==1974 0.027 -0.036 -0.052 -0.062 -0.062

(0.038) (0.023) (0.121) (0.073) (0.130)

year==1975 0.085 -0.025 -0.087 -0.103 -0.103

(0.055) (0.039) (0.120) (0.094) (0.134)

year==1976 0.087 -0.059 -0.124 -0.154 -0.154

(0.071) (0.060) (0.113) (0.143) (0.130)

year==1977 0.169** -0.036 -0.095 -0.128 -0.128

(0.068) (0.057) (0.112) (0.152) (0.132)

year==1978 0.254*** -0.001 -0.062 -0.095 -0.094

(0.075) (0.058) (0.112) (0.151) (0.134)

year==1979 0.287*** -0.008 -0.049 -0.089 -0.088

(0.078) (0.060) (0.106) (0.168) (0.134)

year==1980 0.309*** -0.017 -0.036 -0.074 -0.074

(0.086) (0.068) (0.115) (0.166) (0.140)

year==1981 0.315*** 0.010 -0.023 -0.057 -0.057

(0.069) (0.065) (0.108) (0.169) (0.129)

year==1982 0.420*** 0.071 0.028 -0.010 -0.010

(0.078) (0.071) (0.109) (0.186) (0.135)

year==1983 0.374*** 0.003 -0.045 -0.089 -0.089

(0.101) (0.077) (0.116) (0.202) (0.143)

year==1984 0.518*** 0.111 0.051 0.005 0.005

(0.096) (0.080) (0.108) (0.214) (0.140)

year==1985 0.464*** 0.091 0.018 -0.012 -0.012

(0.093) (0.080) (0.113) (0.182) (0.133)

year==1986 0.555*** 0.129 0.084 0.042 0.042

(0.096) (0.076) (0.107) (0.223) (0.142)

year==1987 0.606*** 0.138* 0.121 0.082 0.082

(0.092) (0.074) (0.107) (0.222) (0.145)

year==1988 0.668*** 0.165** 0.133 0.085 0.085

(0.105) (0.070) (0.106) (0.236) (0.151)

year==1989 0.698*** 0.222*** 0.201* 0.164 0.165

(0.091) (0.071) (0.105) (0.225) (0.142)

year==1990 0.709*** 0.250*** 0.254** 0.226 0.226*

(0.080) (0.068) (0.105) (0.173) (0.132)

year==1991 0.728*** 0.231*** 0.253** 0.220 0.220

(0.063) (0.064) (0.107) (0.187) (0.144)

year==1992 0.812*** 0.270*** 0.281** 0.231 0.231

(0.064) (0.073) (0.111) (0.243) (0.161)
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Table C1 continued: Complete estimation results LP dependent variable: OLS and

2SLS

All Sample All Sample PS Match PS Match PS Match+W

OLS OLS OLS 2SLS 2SLS

(1) (2) (3) (4) (5)

Dependent variable: lny

year==1993 0.821*** 0.266*** 0.231** 0.184 0.185

(0.081) (0.077) (0.112) (0.238) (0.158)

year==1994 0.839*** 0.268*** 0.230** 0.155 0.155

(0.093) (0.075) (0.109) (0.269) (0.168)

year==1995 0.816*** 0.242*** 0.159 0.014 0.014

(0.110) (0.081) (0.114) (0.289) (0.210)

year==1996 0.847*** 0.279*** 0.236** 0.110 0.111

(0.093) (0.081) (0.111) (0.297) (0.195)

year==1997 0.872*** 0.285*** 0.259** 0.130 0.130

(0.086) (0.082) (0.115) (0.313) (0.201)

year==1998 0.874*** 0.282*** 0.258** 0.076 0.076

(0.087) (0.076) (0.116) (0.409) (0.228)

year==1999 0.893*** 0.289*** 0.244* 0.072 0.073

(0.093) (0.079) (0.125) (0.404) (0.231)

year==2000 0.866*** 0.270** 0.194 -0.019 -0.019

(0.122) (0.092) (0.121) (0.412) (0.241)

year==2001 0.916*** 0.277*** 0.220* 0.028 0.029

(0.104) (0.083) (0.115) (0.450) (0.242)

year==2002 0.919*** 0.269** 0.196* 0.014 0.014

(0.107) (0.092) (0.119) (0.452) (0.239)

year==2003 0.904*** 0.261** 0.195 0.013 0.013

(0.101) (0.092) (0.122) (0.447) (0.237)

year==2004 0.988*** 0.310*** 0.239** 0.073 0.074

(0.104) (0.098) (0.121) (0.440) (0.237)

year==2005 1.041*** 0.307*** 0.228* 0.068 0.068

(0.124) (0.101) (0.128) (0.489) (0.254)

year==2006 1.038*** 0.278*** 0.198* 0.049 0.050

(0.122) (0.093) (0.118) (0.497) (0.255)

year==2007 1.067*** 0.270** 0.226* 0.066 0.067

(0.135) (0.092) (0.126) (0.549) (0.276)

year==2008 1.016*** 0.232** 0.185 0.016 0.016

(0.120) (0.105) (0.128) (0.525) (0.267)

year==2009 1.122*** 0.277** 0.264* 0.115 0.116

(0.136) (0.097) (0.139) (0.577) (0.286)

year==2010 1.065*** 0.233** 0.179 0.049 0.050

(0.135) (0.097) (0.131) (0.557) (0.285)
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Table C1 continued: Complete estimation results LP dependent variable: OLS and

2SLS

All Sample All Sample PS Match PS Match PS Match+W

OLS OLS OLS 2SLS 2SLS

(1) (2) (3) (4) (5)

Dependent variable: lny

year==2011 1.100*** 0.255** 0.200 0.065 0.066

(0.138) (0.105) (0.129) (0.561) (0.293)

year==2012 1.154*** 0.295*** 0.190 0.070 0.070

(0.140) (0.086) (0.126) (0.559) (0.295)

year==2013 1.135*** 0.257** 0.162 0.048 0.048

(0.135) (0.099) (0.129) (0.515) (0.282)

year==2014 1.193*** 0.318*** 0.169 0.074 0.075

(0.131) (0.100) (0.128) (0.524) (0.288)

year==2015 1.242*** 0.402*** 0.310** 0.207 0.207

(0.142) (0.118) (0.141) (0.526) (0.283)

year==2016 1.294*** 0.425*** 0.313** 0.210 0.211

(0.145) (0.130) (0.146) (0.538) (0.294)

Constant -1.380*** 0.185 - -

(0.079) (0.167) - -

Observations 660 660 403 403 403

R-squared 0.791 0.891 0.878 0.851 0.851

Number of regcode 15 15 15 15 15

Country FE YES YES YES YES YES

Year FE YES YES YES YES YES

Notes: Robust standard errors in parentheses, and “ ∗ ∗ ∗ ”p < 0.01, “ ∗ ∗”p < 0.05, “ ∗ ”p < 0.1.
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Table C2: Complete estimation results AP dependent variable: OLS and 2SLS

All Sample PS Match PS Match PS Match+W

OLS OLS 2SLS 2SLS

(1) (2) (3) (4)

Dependent variable: : lnAP

Git (or α) 0.136 0.215** 0.091 0.091

(0.095) (0.097) (0.290) (0.156)

year==1974 0.025 -0.005 0.001 0.001

(0.034) (0.064) (0.066) (0.158)

year==1975 0.059 -0.056 -0.046 -0.046

(0.052) (0.091) (0.093) (0.156)

year==1976 0.040 -0.061 -0.043 -0.043

(0.073) (0.109) (0.123) (0.149)

year==1977 0.094 0.025 0.040 0.040

(0.073) (0.108) (0.120) (0.139)

year==1978 0.150* 0.077 0.089 0.089

(0.085) (0.122) (0.130) (0.137)

year==1979 0.182** 0.135 0.150 0.150

(0.081) (0.118) (0.135) (0.134)

year==1980 0.207** 0.178 0.188 0.188

(0.086) (0.128) (0.137) (0.141)

year==1981 0.237*** 0.187 0.197* 0.197

(0.075) (0.108) (0.115) (0.138)

year==1982 0.321*** 0.257** 0.267** 0.267**

(0.081) (0.116) (0.122) (0.136)

year==1983 0.251** 0.179 0.195 0.195

(0.097) (0.129) (0.140) (0.149)

year==1984 0.382*** 0.278* 0.293** 0.293**

(0.088) (0.130) (0.143) (0.134)

year==1985 0.376*** 0.287** 0.293** 0.293**

(0.089) (0.133) (0.131) (0.134)

year==1986 0.429*** 0.351** 0.363** 0.363***

(0.093) (0.137) (0.146) (0.129)

year==1987 0.461*** 0.400** 0.406*** 0.406***

(0.087) (0.143) (0.140) (0.128)

year==1988 0.505*** 0.419** 0.432*** 0.432***

(0.092) (0.144) (0.155) (0.129)

year==1989 0.558*** 0.482*** 0.488*** 0.488***

(0.090) (0.145) (0.142) (0.128)

year==1990 0.591*** 0.544*** 0.544*** 0.544***

(0.080) (0.118) (0.108) (0.132)

year==1991 0.572*** 0.556*** 0.556*** 0.556***

(0.072) (0.111) (0.101) (0.130)
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Table C2 continued: Complete estimation results AP dependent variable: OLS and

2SLS

All Sample PS Match PS Match PS Match+W

OLS OLS 2SLS 2SLS

(1) (2) (3) (4)

Dependent variable: lnAP

year==1992 0.621*** 0.582*** 0.592*** 0.592***

(0.070) (0.121) (0.127) (0.131)

year==1993 0.629*** 0.544*** 0.554*** 0.554***

(0.083) (0.131) (0.137) (0.132)

year==1994 0.635*** 0.528*** 0.549*** 0.549***

(0.092) (0.139) (0.162) (0.133)

year==1995 0.622*** 0.457*** 0.512** 0.512***

(0.098) (0.137) (0.234) (0.153)

year==1996 0.659*** 0.556*** 0.606*** 0.606***

(0.092) (0.132) (0.224) (0.146)

year==1997 0.666*** 0.576*** 0.629*** 0.629***

(0.090) (0.144) (0.243) (0.151)

year==1998 0.662*** 0.578*** 0.659** 0.660***

(0.083) (0.137) (0.306) (0.174)

year==1999 0.678*** 0.562*** 0.644** 0.645***

(0.088) (0.154) (0.323) (0.183)

year==2000 0.679*** 0.532*** 0.629* 0.629***

(0.100) (0.144) (0.334) (0.187)

year==2001 0.685*** 0.552*** 0.651* 0.651***

(0.099) (0.143) (0.342) (0.187)

year==2002 0.681*** 0.514*** 0.610* 0.610***

(0.102) (0.162) (0.350) (0.190)

year==2003 0.672*** 0.524*** 0.617* 0.618***

(0.101) (0.173) (0.350) (0.191)

year==2004 0.734*** 0.590*** 0.679** 0.679***

(0.102) (0.167) (0.333) (0.183)

year==2005 0.747*** 0.564*** 0.661* 0.661***

(0.112) (0.184) (0.369) (0.198)

year==2006 0.725*** 0.553*** 0.648* 0.648***

(0.110) (0.171) (0.351) (0.189)

year==2007 0.736*** 0.605*** 0.709* 0.709***

(0.121) (0.188) (0.374) (0.204)

year==2008 0.692*** 0.535*** 0.637* 0.637***

(0.116) (0.178) (0.361) (0.196)
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Table C2 continued: Complete estimation results AP dependent variable: OLS and

2SLS

All Sample PS Match PS Match PS Match+W

OLS OLS 2SLS 2SLS

(1) (2) (3) (4)

Dependent variable: lnAP

year==2009 0.748*** 0.625*** 0.731* 0.731***

(0.121) (0.197) (0.381) (0.210)

year==2010 0.692*** 0.567** 0.676* 0.676***

(0.127) (0.195) (0.387) (0.209)

year==2011 0.733*** 0.565*** 0.689* 0.689***

(0.128) (0.162) (0.403) (0.214)

year==2012 0.762*** 0.593*** 0.708* 0.708***

(0.128) (0.146) (0.373) (0.203)

year==2013 0.710*** 0.540*** 0.645* 0.646***

(0.120) (0.150) (0.358) (0.194)

year==2014 0.766*** 0.570*** 0.680* 0.681***

(0.118) (0.152) (0.378) (0.201)

year==2015 0.842*** 0.730*** 0.827** 0.827***

(0.116) (0.161) (0.341) (0.191)

year==2016 0.874*** 0.683*** 0.780** 0.780***

(0.132) (0.182) (0.356) (0.197)

Constant -1.402*** -1.299*** - -

(0.082) (0.131) - -

Observations 660 403 403 403

R-squared 0.717 0.709 0.701 0.701

Number of regcode 15 15 15 15

Country FE YES YES YES YES

Year FE YES YES YES YES

Notes: In all models, we controlled the interaction term between Gi and lnkit, as well as ui and vt.

Robust standard errors in parentheses, and “ ∗ ∗ ∗ ”p < 0.01, “ ∗ ∗”p < 0.05, “ ∗ ”p < 0.1.
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Table C3: Complete estimation results using GMOS in place of G: OLS vs. 2SLS

regressions

ln y ln y lnY/X lnY/X

OLS+PSW 2SLS+PSW OLS+PSW 2SLS+PSW

(1) (2) (3) (4)

Dependent variable: lny or lnY/X

lnk 0.716*** 0.478*** - -

(0.120) (0.152) - -

GMOS -0.960 -2.118*** 0.203 0.093

(0.601) (0.777) (0.162) (0.194)

lnk ∗GMOS -1.078** -1.989*** - -

(0.488) (0.625) - -

year==1974 -0.047 -0.028 0.004 0.005

(0.051) (0.117) (0.068) (0.062)

year==1975 -0.078 -0.053 -0.040 -0.039

(0.056) (0.118) (0.093) (0.085)

year==1976 -0.107 -0.054 -0.033 -0.031

(0.071) (0.120) (0.121) (0.110)

year==1977 -0.081 -0.004 0.048 0.050

(0.075) (0.121) (0.118) (0.107)

year==1978 -0.053 0.038 0.095 0.096

(0.080) (0.124) (0.132) (0.120)

year==1979 -0.036 0.066 0.159 0.160

(0.088) (0.122) (0.128) (0.117)

year==1980 -0.028 0.087 0.194 0.195

(0.101) (0.134) (0.136) (0.125)

year==1981 -0.014 0.081 0.203* 0.204**

(0.099) (0.121) (0.113) (0.103)

year==1982 0.036 0.148 0.273** 0.274**

(0.104) (0.129) (0.122) (0.112)

year==1983 -0.033 0.089 0.203 0.205

(0.108) (0.141) (0.140) (0.127)

year==1984 0.063 0.186 0.301** 0.303**

(0.123) (0.131) (0.134) (0.122)

year==1985 0.021 0.126 0.296** 0.297**

(0.134) (0.130) (0.135) (0.123)

year==1986 0.092 0.222* 0.370** 0.371***

(0.122) (0.132) (0.142) (0.129)

year==1987 0.122 0.264* 0.409** 0.410***

(0.123) (0.137) (0.144) (0.132)
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Table C3 continued: Complete estimation results using GMOS in place of G: OLS

vs. 2SLS regressions

ln y ln y lnY/X lnY/X

OLS+PSW 2SLS+PSW OLS+PSW 2SLS+PSW

(1) (2) (3) (4)

Dependent variable: lny or lnY/X

year==1988 0.141 0.294** 0.438** 0.440***

(0.118) (0.141) (0.149) (0.136)

year==1989 0.203 0.338** 0.491*** 0.492***

(0.119) (0.133) (0.147) (0.134)

year==1990 0.251** 0.370*** 0.544*** 0.544***

(0.102) (0.130) (0.118) (0.108)

year==1991 0.249** 0.391*** 0.556*** 0.556***

(0.094) (0.135) (0.111) (0.101)

year==1992 0.287** 0.459*** 0.598*** 0.599***

(0.107) (0.150) (0.124) (0.113)

year==1993 0.237* 0.396*** 0.560*** 0.561***

(0.116) (0.146) (0.134) (0.122)

year==1994 0.258* 0.423*** 0.563*** 0.564***

(0.125) (0.146) (0.141) (0.129)

year==1995 0.247* 0.410*** 0.549*** 0.551***

(0.128) (0.148) (0.149) (0.136)

year==1996 0.308** 0.484*** 0.639*** 0.641***

(0.128) (0.154) (0.148) (0.135)

year==1997 0.326** 0.508*** 0.663*** 0.666***

(0.145) (0.160) (0.157) (0.144)

year==1998 0.364** 0.551*** 0.711*** 0.716***

(0.147) (0.173) (0.175) (0.160)

year==1999 0.334* 0.517*** 0.692*** 0.699***

(0.170) (0.183) (0.184) (0.170)

year==2000 0.306* 0.453** 0.688*** 0.695***

(0.152) (0.185) (0.158) (0.144)

year==2001 0.329** 0.514*** 0.709*** 0.718***

(0.144) (0.171) (0.162) (0.149)

year==2002 0.295* 0.481*** 0.665*** 0.674***

(0.160) (0.172) (0.178) (0.165)

year==2003 0.285 0.460*** 0.670*** 0.679***

(0.170) (0.169) (0.186) (0.172)

year==2004 0.318* 0.512*** 0.727*** 0.736***

(0.169) (0.177) (0.177) (0.164)

year==2005 0.316* 0.543*** 0.712*** 0.723***

(0.175) (0.199) (0.203) (0.190)

64



Table C3 continued: Complete estimation results using GMOS in place of G: OLS

vs. 2SLS regressions

ln y ln y lnY/X lnY/X

OLS+PSW 2SLS+PSW OLS+PSW 2SLS+PSW

(1) (2) (3) (4)

Dependent variable: lny or lnY/X

year==2006 0.291* 0.542*** 0.697*** 0.708***

(0.153) (0.205) (0.190) (0.177)

year==2007 0.321* 0.596*** 0.761*** 0.774***

(0.158) (0.214) (0.209) (0.195)

year==2008 0.260 0.494** 0.686*** 0.700***

(0.150) (0.201) (0.197) (0.183)

year==2009 0.355** 0.640*** 0.781*** 0.796***

(0.142) (0.223) (0.214) (0.200)

year==2010 0.279* 0.591*** 0.728*** 0.743***

(0.158) (0.228) (0.204) (0.191)

year==2011 0.295* 0.586*** 0.744*** 0.763***

(0.158) (0.222) (0.184) (0.174)

year==2012 0.268 0.560** 0.762*** 0.778***

(0.156) (0.229) (0.177) (0.162)

year==2013 0.238 0.534** 0.697*** 0.711***

(0.166) (0.228) (0.170) (0.155)

year==2014 0.240 0.552** 0.733*** 0.749***

(0.168) (0.237) (0.184) (0.169)

year==2015 0.382** 0.687*** 0.875*** 0.888***

(0.177) (0.228) (0.183) (0.166)

year==2016 0.386* 0.691*** 0.828*** 0.841***

(0.194) (0.247) (0.200) (0.181)

Constant 0.178 - -1.319*** -

- (0.234) - (0.136)

Observations 403 403 403 403

R-squared 0.873 0.858 0.687 0.686

Number of regcode 15 15 15 15

Country FE YES YES YES YES

Year FE YES YES YES YES

Notes: Robust standard errors are in parentheses, and “ ∗ ∗ ∗ ”p < 0.01, “ ∗ ∗”p < 0.05, “ ∗ ”p < 0.1.
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Table C4: Estimation Results Models (11) and (12)

G G GMOS GMOS

ln y lnAP ln y lnAP

(1) (2) (3) (4)

Dependent variable: ln y or lnY/X

ln kit (or β0) -0.100 0.109 - -

(0.205) (0.155) - -

Git (or α) 0.722*** - 0.509** -

(0.152) - (0.204) -

Git ∗ ln kit (or β) -0.402*** - - -

(0.102) - - -

R&D Stock -0.090 0.104 -0.024 0.091

(0.086) (0.073) (0.080) (0.071)

Crop V alue Share 0.614 -0.423 0.551 -0.379

(0.445) (0.303) (0.419) (0.343)

Weather Index 0.013 0.022 -0.003 0.015

(0.070) (0.063) (0.061) (0.065)

year==1974 -0.068 -0.000 -0.038 0.005

(0.141) (0.145) (0.127) (0.147)

year==1975 -0.094 -0.052 -0.055 -0.043

(0.145) (0.145) (0.128) (0.145)

year==1976 -0.143 -0.048 -0.063 -0.034

(0.143) (0.142) (0.132) (0.141)

year==1977 -0.105 0.022 -0.011 0.037

(0.147) (0.131) (0.142) (0.132)

year==1978 -0.062 0.065 0.032 0.078

(0.151) (0.132) (0.152) (0.133)

year==1979 -0.048 0.117 0.062 0.134

(0.159) (0.131) (0.158) (0.129)

year==1980 -0.029 0.157 0.078 0.169

(0.164) (0.141) (0.172) (0.140)

year==1981 -0.010 0.158 0.078 0.171

(0.157) (0.135) (0.160) (0.134)

year==1982 0.042 0.226* 0.142 0.240*

(0.164) (0.135) (0.172) (0.135)

year==1983 -0.036 0.154 0.080 0.171

(0.175) (0.149) (0.186) (0.149)

year==1984 0.051 0.251* 0.171 0.269**

(0.174) (0.133) (0.178) (0.130)

year==1985 0.053 0.238* 0.127 0.250*

(0.165) (0.136) (0.175) (0.134)
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Table C4 continued: Estimation Results Models (11) and (12)

G G GMOS GMOS

ln y lnAP ln y lnAP

(1) (2) (3) (4)

Dependent variable: ln y or lnY/X

year==1986 0.110 0.305** 0.220 0.322**

(0.182) (0.131) (0.190) (0.128)

year==1987 0.162 0.343*** 0.266 0.356***

(0.186) (0.130) (0.199) (0.128)

year==1988 0.167 0.365*** 0.294 0.384***

(0.197) (0.133) (0.209) (0.129)

year==1989 0.250 0.423*** 0.341* 0.435***

(0.185) (0.133) (0.197) (0.132)

year==1990 0.312* 0.473*** 0.375** 0.482***

(0.174) (0.139) (0.189) (0.138)

year==1991 0.311* 0.485*** 0.392* 0.494***

(0.186) (0.139) (0.204) (0.138)

year==1992 0.327 0.519*** 0.456** 0.536***

(0.209) (0.140) (0.227) (0.137)

year==1993 0.277 0.476*** 0.392* 0.494***

(0.208) (0.142) (0.223) (0.137)

year==1994 0.241 0.474*** 0.415* 0.502***

(0.217) (0.144) (0.222) (0.136)

year==1995 0.087 0.432** 0.394* 0.489***

(0.266) (0.170) (0.224) (0.139)

year==1996 0.184 0.536*** 0.462** 0.586***

(0.248) (0.162) (0.229) (0.137)

year==1997 0.210 0.551*** 0.488** 0.605***

(0.257) (0.168) (0.241) (0.139)

year==1998 0.146 0.580*** 0.523** 0.658***

(0.289) (0.192) (0.253) (0.144)

year==1999 0.149 0.556*** 0.489* 0.634***

(0.297) (0.205) (0.267) (0.157)

year==2000 0.051 0.538** 0.428 0.629***

(0.316) (0.214) (0.261) (0.149)

year==2001 0.119 0.550*** 0.496* 0.643***

(0.319) (0.211) (0.265) (0.143)

year==2002 0.106 0.512** 0.461* 0.601***

(0.314) (0.212) (0.263) (0.149)

year==2003 0.102 0.518** 0.437* 0.605***

(0.312) (0.213) (0.257) (0.152)
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Table C4 continued: Estimation Results Models (11) and (12)

G G GMOS GMOS

ln y lnAP ln y lnAP

(1) (2) (3) (4)

Dependent variable: ln y or lnY/X

year==2004 0.161 0.582*** 0.482* 0.665***

(0.315) (0.208) (0.272) (0.150)

year==2005 0.181 0.554** 0.526* 0.643***

(0.336) (0.224) (0.302) (0.166)

year==2006 0.166 0.539** 0.524* 0.627***

(0.341) (0.218) (0.316) (0.159)

year==2007 0.170 0.610*** 0.560* 0.702***

(0.360) (0.233) (0.326) (0.164)

year==2008 0.117 0.534** 0.461 0.625***

(0.350) (0.226) (0.312) (0.157)

year==2009 0.227 0.626** 0.608* 0.720***

(0.374) (0.243) (0.340) (0.175)

year==2010 0.162 0.567** 0.553 0.664***

(0.382) (0.245) (0.354) (0.168)

year==2011 0.175 0.584** 0.547 0.689***

(0.384) (0.243) (0.342) (0.154)

year==2012 0.173 0.610*** 0.511 0.710***

(0.382) (0.233) (0.347) (0.152)

year==2013 0.175 0.531** 0.503 0.626***

(0.379) (0.225) (0.354) (0.155)

year==2014 0.218 0.557** 0.528 0.656***

(0.394) (0.232) (0.371) (0.161)

year==2015 0.340 0.710*** 0.659* 0.799***

(0.388) (0.230) (0.360) (0.173)

year==2016 0.340 0.662*** 0.657* 0.752***

(0.406) (0.251) (0.384) (0.201)

GMOS - - -2.158*** 0.080

- - (0.861) (0.086)

ln k ∗GMOS - - -2.087*** -

- - (0.694) -

Number of Observations 403 403 403 403

R-squared 0.847 0.708 0.861 0.690

Number of countries 15 15 15 15

Country FE YES YES YES YES

Year FE YES YES YES YES

Notes: Robust standard errors are in parentheses, and “ ∗ ∗ ∗ ”p < 0.01, “ ∗ ∗”p < 0.05, “ ∗ ”p < 0.1.
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