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We model an agricultural production technology that integrates agricultural revenue, carbon sequestration,
and greenhouse gas (GHG) emissions. The model accommodates cover crop and non-cover crop practices. We
calculate carbon sequestration and GHG emissions shadow prices by quantifying the willingness to accept
to increase sequestration and to reduce GHG emissions further. Our findings are based on a nonparametric
data envelopment analysis (DEA) and a sample of corn fields in Illinois. We find that cover crop fields
exhibit superior carbon benefits, valued at USD 27.30 per acre, compared to non-cover crop fields. This value
falls within the higher range of payments for cover crop adoption in voluntary carbon markets available to
Midwest farms, limiting broader adoption of cover crops.
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1. Introduction

In 2021, agriculture represented about 10% of the total US greenhouse gas (GHG) emissions

of 6,340.2 million metric tons of carbon dioxide equivalent (MMT CO2 eq., Environmen-

tal Protection Agency - EPA 2023). US net emissions, factoring in carbon sequestration,

amounted to 5,586 MMT CO2 eq., with agricultural cropland contributing 2.5% to sequestra-

tion (18.9 MMT CO2 eq.). The main GHGs generated by crop production are nitrous oxide

(N2O), methane (CH4), and CO2 that result from nitrogen (N) fertilizers, soil management,

and energy use. N2O is especially harmful. It has 273 times the warming potential of CO2
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over a 100-year period. The EPA estimates that N fertilizers are responsible for 75% of the
US N2O emissions and half of the agricultural GHG emissions.

Growing concerns about climate change and the incentives o�ered by carbon markets have
led farmers to adopt more sustainable agricultural practices (for example, IL-Corn 2023, ISA
2023). Agriculture o�ers two pathways to reduce its net carbon footprint: adopt management
practices that reduce GHG emissions, and store carbon in the soil (Freibauer et al. 2004,
Smith 2004). Both involve cost.

The complex relationship between agricultural inputs, intended and unintended outputs
(crop production and carbon sequestration, and GHG emissions) makes assessing the cost
of reducing agriculture’s net carbon footprint challenging. We use management-science and
operations-research tools to investigate these costs and to derive shadow prices for car-
bon sequestration and GHG emissions. These shadow prices measure the private costs of
sequestration-enhancing and GHG reduction practices. The GHG emissions reduction strate-
gies include careful use of N fertilizers, minimum mechanized field work, and adoption of
extensive production practices. The sequestration-enhancing practices include growing cover
crops. Because adopting cover crops reduces agriculture’s carbon footprint, we pay especial
attention to studying the value of adoption from agriculture’s perspective. This facilitates
assessing the compensation that carbon markets can o�er to fields when converting to cover
crops.

We develop an agricultural production technology model that integrates agricultural rev-
enue, carbon sequestration, and greenhouse gas (GHG) emissions. The model accommodates
cover crop and non-cover crop agricultural practices. We derive the shadow prices for seques-
tration and GHG emissions using the production technology and a non-parametric approach.
Specifically, we develop an innovative data envelopment analysis (DEA) representation to
model the intersection between agriculture and the environment while using the marginal-
value approach of Podinovski et al. (2016) to obtain shadow prices.

Previous research has provided shadow prices for outputs that lack market prices (Färe
et al. 1993, 2012, Matsushita and Yamane 2012, Murty et al. 2006, Wang et al. 2021). While
the estimation of industrial-pollution shadow prices is widespread, less attention has been
directed to agricultural pollution (see Färe et al. 2006, Tang et al. 2016, Khataza et al. 2017
and Bierkens et al. 2019 for a few exceptions). Although some studies have addressed shadow
pricing of agricultural GHG emissions, to our knowledge, none have derived agricultural
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sequestration shadow prices. Wu et al. (2018) utilize a non-parametric directional distance
function to obtain the shadow price of agricultural carbon emissions in 30 provinces in
China. De Cara and Jayet (2000) focus on shadow pricing of net agricultural GHG emissions
from the French agricultural sector using a maximum revenue linear programming model.
Njuki and Bravo-Ureta (2015) derive the shadow price of GHG emissions from the US dairy
industry using a parametric directional output distance function. These studies model GHG
emissions abatement using a reduced-form representation of the production technology that
cannot account for the interdependence between inputs, intended outputs, and by-products
(see, for example, Murty et al. 2012 and Chen 2014).

Murty et al. (2012) model pollution and intended production to capture the salient features
of by-production. These include the inability to reduce by-products when inputs and intended
outputs remain constant and the interdependence between changes in inputs, intended out-
puts, and by-products. We follow their framework and define an agricultural production
technology set as the intersection of a carbon sequestration sub-technology that generates
agricultural revenue and carbon sequestration and a GHG emissions sub-technology. We
calculate shadow prices for agricultural carbon sequestration and GHG emissions using a
unique data set collected in 2021 among Illinois corn growers, o�ering field-level estimates.

To the best of our knowledge, our study is the first to model agricultural revenue, carbon
sequestration, and GHG emissions jointly while considering the interdependence between
these agricultural outputs. For the first time, we provide shadow prices for both carbon
sequestration and GHG emissions. Using agricultural land as the numeraire, we calculate
carbon sequestration shadow prices for each field in our sample by measuring the field’s will-
ingness to accept an additional increase in carbon sequestration. Similarly, for GHG emissions
shadow prices, we quantify the willingness to accept a small reduction in GHG emissions.
By comparing cover crop and non-cover crop fields, we provide the value of the superior car-
bon services provided by cover crop fields and compare it against current voluntary carbon
market payments.1

Our results suggest that cover crop fields can sequester carbon at a lower marginal cost
than non-cover crop fields, highlighting the benefits of cover crops for carbon sequestration.
However, non-cover crop fields exhibit lower marginal costs in reducing GHG emissions,
attributable to their more intensive nitrogen use and increasing marginal costs of mitigating
GHG emissions. We summarize the various shadow values into a single price that reflects
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the marginal value of the total carbon benefits of cover crop relative to non-cover crop fields,

expressed in USD per acre. The findings suggest that cover crop fields exhibit higher carbon

benefits, valued at USD 27.30 per acre, compared to non-cover crop fields.

Our results allow us to assess the potential farmer participation in carbon markets by

estimating the private costs of providing carbon o�sets. Carbon markets are becoming a

popular market-based policy to reduce GHG emissions. In a carbon market, sequestered

carbon and/or avoided or reduced GHG emissions may generate carbon o�sets that can be

certified, registered, and traded. Enterprises contributing to carbon sequestration and GHG

emissions reduction represent the market’s supply side. The demand side should include

enterprises that intend to reduce upstream and downstream emissions and those that find

buying carbon o�sets from the market cheaper than reducing their carbon footprint.

Despite the absence of a compliance carbon market for Illinois farms, some voluntary

carbon markets compensate farmers for the adoption of practices that reduce fields’ carbon

footprint. Programs such as the “Farmers for Soil Health” (PCM 2024a) initiative and the

“New PepsiCo Incentive Payment Program” (PCM 2024b) o�er payments ranging from USD

10 to USD 25 per acre for the adoption of cover crops. Carbon benefits from cover crops valued

at USD 27.30 per acre exceed this upper limit. This suggests that current compensation

from voluntary markets may not fully cover adoption costs for several fields in our sample.

The implications of our results extend beyond the agricultural community, o�ering valuable

insights for policymakers aiming to encourage sustainable farming practices and navigate the

complexities of carbon markets. Results are also relevant for firms seeking to reduce their

carbon footprint, as our values serve as guidelines to stimulate an increased supply of carbon

o�sets.

2. Methodology

This section describes our methods to derive shadow prices for carbon sequestration and

GHG emissions. We first present a general discussion of the agricultural production tech-

nology and how shadow values can be generated using a functional representation of the

technology. We then define the DEA formulation of the functional representation of this

technology.
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2.1. The technology

Our sample fields produce corn, and we tailor the production technology to these fields by
allowing for two intended outputs: corn revenue y and carbon sequestration s, and one unin-
tended output - GHG emissions e. The intended and unintended outputs are produced by
non-polluting inputs x œ RK

+ , including land x1 and other inputs x≠1, along with pollut-
ing inputs such as nitrogen n and power costs p that generate GHG emissions. The corn
production technology is defined by

T = {(x,n, p, y, s, e) œRK+5
+ : (x,n, p) can produce (y, s, e)}.

Following Murty et al. (2012), we model T as the intersection of two distinct sub-
technologies: the carbon sequestration technology, T S, that generates revenue from corn and
carbon sequestration and the GHG emissions technology, T E, that generates GHG emissions.
The two sub-technologies share the polluting inputs n and p. We write:

T S = {(x,n, p, y, s, e) œRK+5
+ : (x,n, p) can produce (y, s)}, (1)

and
T E = {(x,n, p, y, s, e) œRK+5

+ : (x,n, p) can produce e} (2)

with T as their intersection.
T = T S fl T E.

We assume that land is freely disposable. That is

(x1, x≠1, n, p, y, s, e) œ T =∆ (xÕ
1, x≠1, n, p, y, s, e) œ T for xÕ

1 Ø x1.

In words, if one can produce (y, s, e) from (x1, x≠1, n, p), then one can also produce (y, s, e)
from (xÕ

1, x≠1, n, p), where xÕ
1 Ø x1. Given other inputs, this implies that increasing land use

is consistent with nondecreasing revenue, sequestration, and constant GHG emissions. We
assume T is closed and nonempty. By our assumptions of closedness, nonemptiness, and free
disposability of land, the following holds

X(x≠1, n, p, y, s, e) Æ x1 ≈∆ (x1, x≠1, n, p, y, s, e) œ T, (3)

where

X(x≠1, n, p, y, s, e) = inf{x1 : (x1, x≠1, n, p, y, s, e) œ T}

= inf{x1 : (x1, x≠1, n, p, y, s, e) œ T S · (x1, x≠1, n, p, y, s, e) œ T E}.
(4)
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X(x≠1, n, p, y, s, e) [hereafter, X(.)] in expression (3) is a function representation of T . Thus,
knowing X(.) is equivalent to knowing T . It gives the minimum land required to produce
(y, s, e) given some (x≠1, n, p).

Define XS(x≠1, n, p, y, s) and XE(x≠1, n, p, e) as

XS(x≠1, n, p, y, s) = inf{x1 : (x1, x≠1, n, p, y, s, e) œ T S} (5)

and
XE(x≠1, n, p, e) = inf{x1 : (x1, x≠1, n, p, y, s, e) œ T E}. (6)

XS(x≠1, n, p, y, s) [hereafter, XS(.)] and XE(x≠1, n, p, y) [hereafter, XE(.)] give the minimum
amount of land to produce (y, s) and e, given other netputs. Under the assumptions that T S

and T E are closed and nonempty and x1 is freely disposable, the following holds,

XS(x≠1, n, p, y, s) Æ x1 ≈∆ (x1, x≠1, n, p, y, s, e) œ T S, (7)

XE(x≠1, n, p, e) Æ x1 ≈∆ (x1, x≠1, n, p, y, s, e) œ T E. (8)

The free disposability of x1 ensures XS(.) and XE(.) are complete function representations
of sub-technologies T S and T E, respectively. Thus, from (4), (5) and (6) we have

X(x≠1, n, p, y, s, e) = max{XS(x≠1, n, p, y, s),XE(x≠1, n, p, e)}. (9)

2.2. Shadow prices for carbon sequestration and GHG emissions

For a smooth technology, shadow values are obtained as derivatives of the function repre-
sentation of the technology. We derive the function representation of our technology using
DEA, which results in a polyhedral frontier. E�cient fields can form the kink of the frontier
where shadow values are not unique. Thus, we obtain carbon sequestration and GHG emis-
sions shadow prices in land units using the one-sided derivatives (marginal values) of X(.)
(Chambers and Färe 2008, Podinovski et al. 2016). One-sided derivatives of X(.) at s for a
small movement ⁄ with respect to a vector v are

X Õ
s(x≠1, n, p, y, s, e;v) = lim

⁄æ0+

A
X(x≠1, n, p, y, s + ⁄v, e) ≠ X(x≠1, n, p, y, s, e)

⁄

B

(10)

and

≠X Õ
s(x≠1, n, p, y, s, e;v) = lim

⁄æ0≠

A
X(x≠1, n, p, y, s + ⁄v, e) ≠ X(x≠1, n, p, y, s, e)

⁄

B

. (11)
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Equation (10) is the right-hand derivative of X(.) with respect to s, which gives the willing-
ness to accept a small unit increase in s. Equation (11) is the left-hand derivative of X(.) and
gives the willingness to pay for a small unit decrease in s. Both (10) and (11) are expressed
in land units given all other netputs fixed (Chambers and Färe 2008, Chambers et al. 2014).
One-sided derivatives of X(.) at e for a small movement – with respect to vector v are

X Õ
e(x≠1, n, p, y, s, e;v) = lim

–æ0+

A
X(x≠1, n, p, y, s, e + –v) ≠ X(x≠1, n, p, y, s, e)

–

B

(12)

and

≠X Õ
e(x≠1, n, p, y, s, e;v) = lim

–æ0≠

A
X(x≠1, n, p, y, s, e + –v) ≠ X(x≠1, n, p, y, s, e)

–

B

. (13)

Equation (12) is the right-hand derivative of X(.) with respect to e, which gives the will-
ingness to pay for a small unit increase in e. Equation (13) is the left-hand derivative of
X(.) and gives the willingness to accept a small unit decrease in e. Both (12) and (13) are
expressed in land units given all other netputs fixed.

Function X(.) is convex thus, for ⁄ œ [0,1] and two points s and sÕ,

X(s) + ⁄[X(sÕ) ≠ X(s)] Ø X(s + ⁄(sÕ ≠ s))

where X(s) is a simplified notation of X(x≠1, n, p, y, s, e) and X(s + ⁄(sÕ ≠ s)) is a simplified
notation of X(x≠1, n, p, y, s + ⁄(sÕ ≠ s), e). If a direction v is defined by sÕ ≠ s, then,

X(s) + ⁄[X(sÕ) ≠ X(s)] Ø X(s + ⁄v)

Rearranging, we get,
X(sÕ) ≠ X(s) Ø X(s + ⁄v) ≠ X(s)

⁄

Taking the limit ⁄ æ 0+ on the right-hand side gives

X(sÕ) ≠ X(s) Ø lim
⁄æ0+

A
X(s + ⁄v) ≠ X(s)

⁄

B

From (10), it implies
X(sÕ) ≠ X(s) Ø X Õ

s(s;v)

The subdi�erential of X(.) at s is given by

ˆsX(s) = {q œR : X(sÕ) Ø X(s) + qÕ(sÕ ≠ s),’sÕ œR} (14)
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where X(s) + qÕ(sÕ ≠ s) gives the approximation of the linear change in X(.) when we move
from s to sÕ for all sÕ œ R. Geometrically, it consists of all the possible hyperplanes tangent
to (s,X(s)). Define sÕ a point after a small movement ⁄ from s in the direction v = 1. From
(14), we get

X(s + ⁄) ≠ X(s)
⁄

Ø qÕ, (15)

which implies, from Rockafellar (1970, chap. 23), Theorem 23.4,

X Õ
s(s; 1) = max{qÕ : q œ ˆsX(s)} = max{ˆsX(s)} (16)

Now defining sÕ a point after a small movement ⁄ from s in the direction v = ≠1, we get

X Õ
s(s;≠1) = max{≠qÕ : q œ ˆsX(s)} = ≠min{qÕ : q œ ˆsX(s)}

=∆ ≠ X Õ
s(s;≠1) = min{ˆsX(s)}

(17)

In terms of e we get

X Õ
e(e; 1) = max{qÕ : q œ ˆeX(e)} = max{ˆeX(e)} and (18)

≠X Õ
e(e; 1) = min{qÕ : q œ ˆeX(e)} = min{ˆeX(e)} (19)

Considering the intended nature of carbon sequestration, we calculate its shadow prices using
equation (16). Given the unintended nature of GHG emissions, we calculate their shadow
prices by relying on (19).

2.3. Corn production technology and DEA representation

Table 1 provides the netputs, their notations, and units of measurement for the corn produc-
tion technology. Inputs are factors that produce or boost corn grain yield or prevent yield
drag. Some contribute directly or indirectly to carbon sequestration and GHG emissions.
Plants utilize atmospheric CO2 to produce glucose molecules during photosynthesis simul-
taneously sequestering and storing the carbon in their biomass and soil (Hutchinson et al.
2007, Lorenz 2013). Thus, inputs that boost corn production or prevent yield drag contribute
to carbon sequestration (s). Synthetic N fertilizer (n) boosts crop yield (and thus s). How-
ever, it contributes to GHG emissions (e) by generating N2O.2 The more fertilizer applied,
the greater the danger of fertilizer loss due to gaseous emissions. Power costs (p) include
costs related to mechanized fieldwork such as corn and cover crop planting, corn harvest,
and cover crop termination associated with CO2 emissions. GHG emissions are estimated
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Table 1 Netputs in the corn production technology.

Input - (Unit) Output - (Unit)

(n) Nitrogen (lbs.) (y) Revenue ($)
(p) Power costs ($) (s) Sequestration (tCO2 eq.)
(x1) Land (acres) (e) GHG emissions (tCO2 eq.)
(x2) Corn seed cost ($)
(x3) Phosphorus (lbs.)
(x4) Potassium (lbs.)
(x5) Pesticide cost ($)
(x6) Organic matter (%)
(c) Cover crop use (Cover crop and Non-cover crop)

Note: Cover crop use is a categorical variable. Notation and units of measure are indicated in parentheses before and
after the netput description, respectively. Netputs and units of measurement are conditioned by our dataset, which
we discuss in the Data section.

measures of N2O and CO2 emissions mostly from N application and mechanized field works.

Other inputs such as other fertilizers, pesticides and seeds can reduce GHG emissions by

boosting crop yield, leading to increased N uptake, or prevent yield drag, avoiding decreased

N uptake. A lack of phosphorus and potassium fertilizers might limit plant growth. When

used appropriately, pesticides prevent yield from declining by controlling weeds and insects.

Seeds are essential for crop growth and subsequent nitrogen uptake.

Our production technology includes a categorical variable, cover crop use, distinguish-

ing between cover and non-cover crop practices. In addition to improving soil quality,

cover crops contribute to carbon sequestration. Cover crops also reduce N2O emissions by

absorbing remnant N after the harvest of main crops (Behnke and Villamil 2019) miti-

gating denitrification and associated N2O emissions from fields. A common approach to

handling categorical variables in DEA modeling is to treat di�erent categories as sepa-

rate production processes within the technology (Førsund 2002). We use subscript c, where

c œ {cover crop fields, non-cover crop fields} to distinguish between the two production pro-

cesses.

As discussed earlier, we use XS
c (.) to represent T S

c and XE
c (.) to represent T E

c . XS
c (.)

provides the minimum amount of land x1 to produce a given (y, s) holding all other netputs

constant (Equation 20). XE
c (.) provides the minimum amount of land x1 for a given e holding

all other netputs constant (Equation 21). Fields with XS
c (.) = x1 are located on the frontier of

the carbon sequestration technology. Fields with XE
c (.) = x1 are on the frontier of the GHG
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emissions technology. Fields on the frontiers are e�cient, while fields not on the frontiers are

ine�cient. The DEA formulations for XS
c (.) and XE

c (.) are:

XS
c (x≠1, n, p, y, s) = min

“i

Y
_______]

_______[

q
i “ixi1 :

’k = 2, . . . ,5, xk = q
i “ixik, x6 Ø q

i “ixi6,

n = q
i “ini, p = q

i “ipi, y Æ q
i “iyi, s Æ q

i “isi,

“i Ø 0, and q
i “i = 1

Z
_______̂

_______\

(20)

and

XE
c (x≠1, n, p, e) = min

µi

Y
_______]

_______[

q
i µixi1 :

’k = 2, . . . ,5, xk = q
i µixik, x6 Ø q

i µixi6,

n = q
i µini, p = q

i µipi, e = q
i µiei,

µi Ø 0, and q
i µi = 1

Z
_______̂

_______\

, (21)

where i = 1, . . . , I, denotes the fields and “i and µi the weight of a particular field i in the linear

combination of XS
c (.) and XE

c (.). We assume that our crop production technology exhibits

variable returns to scale (VRS), which in DEA formulations is represented by the constraints
q

i “i = 1 and q
i µi = 1. The equality and inequality signs in the netput constraints denote

weak and free disposability, respectively.

We assume free disposability of the intended outputs and weak disposability of the unin-

tended output. It ensures that one can always produce less crop revenue and sequester less

carbon from the atmosphere with the same inputs and GHG, but one cannot reduce GHG

emissions maintaining the same inputs and intended outputs. Corn requires N for optimal

growth, and applying N fertilizers based on soil N level can enhance crop yield (Nafziger

2017). However, applying too much N fertilizer can decrease corn yield (CORTEVA 2023,

Vargas et al. 2015) and a�ect revenue. To allow for N congestion in corn production, we

assume weak disposability of nitrogen (n) in T S
c . This ensures increasing n while maintaining

the other netputs constant is infeasible. We further allow for congestion in the use of power

costs (p), potassium (x4) and pesticides (x5). In contrast, we assume that organic matter

in soil (x6) is freely disposable, as one can always increase organic matter in soil without

altering corn revenue (y) and carbon sequestration (s).

As discussed, N fertilizers and power costs contribute to N2O and CO2 emissions (Hassan

et al. 2022), which suggests that using excess N fertilizers and power costs for a fixed e is

infeasible. Thus, we assume weak disposability of n and p in T E
c . This is consistent with
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Figure 1 Approximation of the convex technology using hypothetical points and freely and weakly disposable
netputs.

the weak disposability of e, as GHG emissions can only be increased (decreased) with an

increase (decrease) in N fertilizers and/or power costs. Formally, nitrogen (n) and emissions

(e) are weakly disposable if

(x,n, p, y, e) œ T E =∆ (x,⁄n, p, y,⁄e) œ T E,⁄ Ø 1 and

(x,n, p, y, e) œ T E =∆ (x, ◊n, p, y, ◊e) œ T E, ◊ œ [0,1],

which implies that we can increase or decrease e and n in tandem. Also, this is true between

power costs (p) and emissions (e). Organic matter in soil (x6) is freely disposable in T E
c as

one can always increase soil organic matter without altering e given other fixed inputs. All

inputs that are weakly disposable in T S
c are also weakly disposable in T E

c as overuse of these

inputs can harm the intended outputs and increase GHG emissions, given a fixed amount of

other netputs.

In Figure 1, we illustrate the shape of XS
c (.) in (x1, n, y) space. We select three hypothetical

points A, B and C. The plane ABC represents the convex technology among three combina-

tions of inputs and output. Free disposability of x1 is illustrated by planes ACDF , BCDE,

and ABEF moving in the direction of x1 infinitely and forming a convex hull ABCDEF .

Input n is weakly disposable. Thus, ACDF and AFGH are bounding hyperplanes in the

direction of n, implying that the shadow price sign for n is unrestricted. Free disposabilty of

y implies all points below the convex hull ABC are in the feasible region. Jointly imposing
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free disposability of x and y ensures all points below ABCDEF are in the feasible region

(i.e., points on and in the region ABCDEF plus ABEFGHIJ).

The dual versions of the linear problems (20) and (21) are

HS
c (x≠1, n, p, y, s) = max

w

Y
______________]

______________[

„ + wyy + wss ≠ (wy
n ≠ w

Õy
n )n ≠ (wy

p ≠ w
Õy
p )p

≠
ÿ

k=2,...,5
(wy

k ≠ w
Õy
k )xk ≠ wy

6x6 :

„ + wyyi + wssi ≠ (wy
n ≠ w

Õy
n )ni ≠ (wy

p ≠ w
Õy
p )pi

≠
ÿ

k=2,...,5
(wy

k ≠ w
Õy
k )xik ≠ wy

6xi6 Æ xi1

’i = 1, . . . , I

Z
______________̂

______________\

(22)

HE
c (x≠1, n, p, e) = max

w

Y
______________]

______________[

◊ + (we ≠ wÕ
e)e ≠ (we

n ≠ w
Õe
n )n ≠ (we

p ≠ w
Õe
p )p

≠
ÿ

k=2,...,5
(we

k ≠ w
Õe
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where „ and ◊ are the dual variables to VRS constraints in (20) and (21), respectively and

w’s in (22) and (23) are marginal (shadow) values of netputs of the carbon sequestration and

the GHG emissions technologies. These marginal values are fields’ private netput shadow

prices at their private optimal level of outputs and are derived using equations (24) and (25).
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and (24)
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. (25)

The first constraints in (24) and (25) give the solutions to (22) and (23) for all fields, both
e�cient and ine�cient.3 For e�cient fields, the solution to HS

c (.) and HE
c (.) is x1. Thus, the

first constraints in (24) and (25) for e�cient fields are:

„ + wyy + wss ≠ (wy
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Õe
n )n ≠ (we

p ≠ w
Õe
p )p ≠

ÿ

k=2,...,5
(we

k ≠ w
Õe
k )xk ≠ we

6x6 = x1.

For ine�cient fields, shadow values are derived as slopes at their projections on the frontier
(Podinovski 2019). The first constraints in (24) and (25) give the projection on the frontier
for any ine�cient fields.

The shadow prices of carbon sequestration and GHG emissions are real prices as they
are in units of land per unit of GHG emissions, i.e., acres per tCO2 eq. The max{ˆsHS

c (.)}
is the additional farm area farmers would require to increase carbon sequestration by a
tCO2 eq. for a particular year. The min{ˆeHE

c (.)} represents the area farmers would need to
add to reduce GHG emissions by a tCO2 eq. for a particular year. To facilitate comparison
with carbon market payment structures, expression (26) transforms real shadow prices into
nominal values, in USD per tCO2 eq. per year, by using N applied per acre and N price.

Nominal shadow price
A

USD

tCO2 eq.

B

= Real shadow price
A

acre

tCO2 eq.

B

◊ N applied
A

lbs.

acre

B

◊ N price
3

USD

lbs.

4
.

(26)

3. Data

The data for this study come from Precision Conservation Management (PCM), a farmer-led
program aimed at developing conservation strategies that address environmental challenges
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while remaining financially viable (PCM 2023). PCM collects data at the field level on
input and output quantities, costs, and returns from participating Illinois corn and soybean
growers. In collaboration with Cool Farm Tool (CFT), PCM provides estimates of carbon
sequestration and GHG emissions for each field based on the netputs used. PCM is pivotal
in enabling farmers to participate in carbon markets.

The 2021 PCM data comprises 793 fields from 159 Illinois corn growers that manage 51,708
acres of farmland in 46 of the 102 Illinois counties. Figure 2 shows that most sample acres are
concentrated in central and northern Illinois. Corn fields in our sample represent less than
1% of the 11 million acres of corn for grain planted in Illinois in 2021 (NASS 2023). Sample
average corn yield is 215 bushels per acre, about 6% higher than the average state corn yield
in 2021 (202 bushels per acre, NASS 2023). Di�erences in yields and the small percentage
of corn land covered by our sample farms call for caution when extrapolating our results.
More than 90% of the sample fields follow a corn-soybean rotation system. While corn is a
N intensive crop, little or no nitrogen is applied in soybean farming because the crop can fix
nitrogen on its own. We focus on corn in our analysis, as it poses more challenges for carbon
sustainability than soybeans.

Following the methods section, we define 12 variables – three outputs and nine inputs.
These include revenue from corn grain production in USD (y); carbon sequestration in tCO2

eq. (s); gross GHG emissions in tCO2 eq. (e); nitrogen fertilizer in pounds (n); power costs in
USD (p); land area in acres (x1); corn seed costs in USD (x2); phosphorus fertilizer in pounds
(x3); potassium fertilizer in pounds (x4); pesticide costs in USD (x5); organic matter percent
in soil (x6); and cover crop use (c) as a categorical variable. PCM estimates s and e based
on Cool Farm Tool and produces x6 based on the USDA Web Soil Survey.4 All netputs are
expressed on a per-field basis, the unit of observation in the PCM dataset. Information on
cover crops is limited and of a qualitative nature. We categorize observations as cover crop
fields if they use either winter-killed cover crops or winter-hardy cover crops and non-cover
crop fields if they don’t use any.

Table 2 displays netput summary statistics by cover crop use on a per-acre basis for
comparability. Appendix B complements summary statistics at the field level. Out of 793
fields, 120 (15%) plant cover crops and 673 (85%) do not. The median gross revenue per
acre for cover crop fields is $1,105.12, approximately 4% less than for non-cover crop fields
($1,155.00). The median carbon sequestration per acre in cover crop fields (0.55 tCO2 eq.)
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Figure 2 Distribution of sample acres in Illinois.

Table 2 Summary statistics of variables used in the analysis by cover crop use on a per-acre basis.

Netputs

Cover crop field
N = 120

Non-cover crop field
N = 673

Median p25 p75 Median p25 p75

(y) Revenue ($/acre) 1105.12 960.75 1207.50 1155.00 1050.00 1249.50
(s) Sequestration (tCO2 eq./acre) 0.55 0.40 0.55 0.12 0.12 0.26
(e) GHG emissions (tCO2 eq./acre) 0.24 0.21 0.27 0.25 0.22 0.29
(n) Nitrogen (lbs./acre) 194.66 176.00 218.14 206.80 188.89 223.30
(p) Power costs ($/acre) 137.30 128.50 147.62 120.75 109.80 129.85
(x1) Land (acres) 42.52 25.83 69.21 67.00 38.28 82.31
(x2) Corn seed cost ($/acre) 120.31 118.59 120.31 120.31 113.44 120.31
(x3) Phosphorus (lbs./acre) 53.52 40.00 78.00 71.22 52.00 89.83
(x4) Potassium (lbs./acre) 80.00 60.00 90.00 75.00 58.20 120.00
(x5) Pesticide cost ($/acre) 74.00 55.00 77.00 74.00 63.00 85.00
(x6) Organic matter (%) 0.08 0.04 0.17 0.08 0.05 0.98

Note: p25 and p75 denote the first and third quartiles, respectively. Notation and units of measure are indicated in
parentheses before and after the netput description, respectively. Source - PCM dataset.

is 358% higher than in non-cover crop fields (0.12 tCO2 eq.). Non-cover crop fields emit 4%

more greenhouse gas (GHG) emissions per acre (0.25 tCO2 eq.) than cover crop fields (0.24

tCO2 eq.). The median nitrogen applied is 194.66 and 206.80 lbs. per acre for cover and

non-cover crop corn fields.
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The University of Illinois recommends using N fertilizer based on the Corn Nitrogen Rate
Calculator (CNRC). CNRC provides the Maximum Return to Nitrogen (MRTN) rate and
the Most Profitable Nitrogen Range (MPNR) based on current nitrogen and corn prices
for di�erent regions in the state (CNRC 2023). Using a N price of $0.38 per pound and a
corn price of $5.25 per bushel, both obtained from the PCM dataset,5 we derive the MRTN
and MPNR rates for our sample. For the northern, central, and southern regions of Illinois,
MRTN is 194, 193, and 215 lbs. of N per acre, while the MPNR is 178-208, 180-207, and
200-231 lbs. of N per acre. Appendix C o�ers the distribution of corn fields across di�erent
categories of N use based on the MRTN and the MPNR. The appendix shows that the
percentage of corn fields applying above the university-recommended N (MRTN and MPNR)
is higher among non-cover crop fields than among cover crop fields, consistent with relatively
higher GHG emissions from non-cover crop fields.

The median power cost for cover crop fields is higher than that for non-cover crop fields
($137.30 vs. $120.75 per acre). This reflects the extra tillage and planting operations required
by cover crop fields. The median land area of cover crop and non-cover crop fields is 42.52 and
67.00 acres, respectively. The median corn seed cost per acre is the same for both types of
fields ($120.31). Cover crop fields exhibit a lower phosphorus fertilizer cost per acre ($53.52)
than non-cover crop fields ($71.22). The potassium cost per acre is slightly higher in cover
crop ($80.00) than in non-cover crop fields ($75.00). Both field types have the same median
pesticide cost per acre ($74.00). The estimated median organic matter content in soil is
also the same across field types (0.08%). Following Sarkis (2007), we estimate our DEA
model using normalized netputs to reduce dispersion in magnitudes and for computational
e�ciency. We normalize each netput by dividing its observations by its mean.

4. Results

We calculate XS
c (.) in (20), XE

c (.) in (21), and the technology Xc(.) = max{XS
c (.),XE

c (.)}.
Given some fixed level of other inputs, Xc(.) gives the maximum between the minimum
land required for given agricultural revenue and carbon sequestration and the minimum
land required for given GHG emissions. We identify fields with XS

c (.) Ø XE
c (.) and call them

carbon sequestration technology fields. We call fields with XS
c (.) Æ XE

c (.) as GHG emissions

technology fields. Carbon sequestration technology fields use land to produce intended out-
puts at least as e�ciently as to generate GHG emissions. GHG emissions technology fields
use land to generate GHG emissions at least as e�ciently as to produce the intended outputs.
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Figure 3 Technologically feasible space of T in (x1, (x≠1, n, p)) space.

Figure 3 illustrates the technologically feasible space of T in (x1, (x≠1, n, p)) space and
regions for carbon sequestration and GHG emissions technology fields. Let the piece-wise
linear frontier through A, B, and C belong to the isoquant for yÕ and sÕ, and the piece-wise
linear frontier through D, E, and F belong to that for eÕ. All input bundles due east of
the frontier ABC can produce yÕ and sÕ. All input bundles due east of the frontier DEF

can produce eÕ. The input bundles that can produce yÕ, sÕ, and eÕ fall in the intersection of
these two sets, points due east of the piece-wise linear DOC. Fields in OCGH are carbon
sequestration technology fields, and fields in DOHI are GHG emissions technology fields. The
equality signs denoting carbon sequestration and GHG emissions technology fields represent
fields in OH. These fields use land to produce intended outputs and reduce GHG emissions
with equal e�ciency.

Table 3 illustrates the distribution of sample fields into carbon sequestration and GHG
technology fields by cover crop use. We find that 71% of cover crop fields are carbon seques-
tration technology fields, while 65% are classified as GHG emissions technology fields. The
two percentages do not add up to 100% as they include the intersection between the two
sub-technologies. Non-cover crop fields have a larger proportion (58%) of GHG emissions
technology fields than carbon sequestration technology fields (49%). Di�erences between
cover crop and non-cover crop fields reflect cover crop fields’ ability to sequester more carbon
per acre compared to non-cover crop fields. The non-trivial presence of cover and non-cover
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Table 3 Distribution of carbon sequestration and GHG emissions technology fields by cover crop use.

Cover crop field
N = 120

Non-cover crop field
N = 673

Carbon sequestration technology fields 85 (71%) 330 (49%)
GHG emissions technology fields 79 (65%) 388 (58%)

Note: Carbon sequestration technology fields are fields with XS
c (.) Ø XE

c (.) and GHG emissions technology fields are
fields with XS

c (.) Æ XE
c (.). The total percentages in carbon sequestration and GHG emissions technology fields do

not add up to 100% for cover and non-cover crop fields because of the presence of fields belonging to both carbon
sequestration and GHG emissions technology fields. The intersection, i.e., 44 (36% of) cover crop and 45 (7% of)
non-cover crop fields, uses land equally e�ciently to produce intended outputs and reduce GHG emissions.

crop fields in the GHG emissions technology category reflects that a significant proportion of

sample fields apply nitrogen above recommended rates. Appendix C reveals that 52.5% and

68.80% of cover crop and non-cover crop fields apply nitrogen above MRTN. This facilitates

fields to be classified as GHG emissions technology fields, indicating their relative ease in

reducing GHG emissions.

We recalculate both XS
c (.) and XE

c (.) using carbon sequestration and GHG emissions

technology fields, respectively, and identify the e�cient and ine�cient fields. The carbon

sequestration technology e�ciency scores are calculated as ⁄S = XS
C(.)/x1, the minimum land

area ratio to actual land area. The GHG emissions technology e�ciency scores are derived

as ⁄E = XE
C (.)/x1. When ⁄S(⁄E) = 1, fields are fully e�cient in their land use given their

intended outputs (GHG emissions). When ⁄S(⁄E) < 1, fields do not minimize land area,

given their intended outputs (unintended GHG emissions).

We show the distribution of ⁄S and ⁄E for our sample fields by cover crop use in Figure 4. A

100% and 76% of cover crop and non-cover crop crop carbon sequestration technology fields

are e�cient (Figure 4, panel A). While cover crop fields have lower median revenue per acre

than non-cover crops, their e�ciency in the carbon sequestration technology is likely driven

by superior carbon sequestration. This results in average carbon sequestration technology

e�ciency scores for cover and non-cover crop fields of 1.000 and 0.990. Percentage-wise 97%

and 76% of the cover crop and non-cover crop GHG emissions technology fields are e�cient

(Figure 4, panel B), resulting in average e�ciency scores of 0.998 (0.991). These results

suggest that cover crop fields more closely adhere to MRTN than non-cover crop fields.

In summary, cover crop fields use land more e�ciently for both intended and unintended

outputs, consistent with their greater carbon benefits compared to non-cover crop fields.
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Figure 4 Distribution of the carbon sequestration technology (⁄S) and the GHG emissions technology (⁄E)
e�ciency scores by cover crop use.

Panel A: Carbon sequestration technology e�ciency scores (⁄S)
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We calculate shadow prices for e�cient and ine�cient fields. As discussed, shadow prices

for e�cient fields are the frontier’s slope at their specific positions. Shadow prices for inef-

ficient fields are the slope at their projection on the frontier. This ensures that land use

ine�ciencies are not factored into shadow prices. The focus is on compensating fields for

carbon sequestration and GHG emissions mitigation rather than, for instance, unnecessary

land rental costs.

To retrieve carbon sequestration and GHG emissions shadow prices, we run the linear

programs (24) and (25), for both cover and non-cover crop fields. The optimization can

result in unbounded solutions (Podinovski and Førsund 2010) when a marginal increase in

sequestration or reduction in emissions, holding other netputs fixed, leads outside of the
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feasible technology. This is a consequence of the weak disposability assumptions on most net-
puts, which restricts the extrapolation outside the convex combination of the observed data.
Shadow prices are undefined for the unbounded solutions. Thus, we only report bounded
solutions.

Because we use mean-normalized data, shadow values max{ˆsHS
c (.)} (min{ˆeHE

c (.)}) are
expressed as ratios of mean-normalized land to mean-normalized carbon sequestration (GHG
emissions). We transform max{ˆsHS

c (.)} to acres of land per tCO2 eq. by multiplying by the
sample mean land area to the sample mean sequestration ratio. We convert min{ˆeHE

c (.)}
to acres of land per tCO2 eq. by multiplying by the sample mean land area to the sample
mean GHG emissions ratio.

Table 4 presents carbon sequestration and GHG emissions shadow values for e�cient
fields by cover crop use in panels A and B, respectively. Columns labeled (1) report real
values (in acres per tCO2 eq.). Columns labeled (2) report nominal values (in USD per
tCO2 eq.) based on equation (22). Carbon sequestration shadow values are reported for 36
cover crop and 204 non-cover crop carbon sequestration technology fields, accounting for
42.35% and 81.27% of total e�cient fields, respectively. As a consequence of our disposability
assumptions, shadow prices are undefined for 57.65% e�cient cover crop and 18.73% e�cient
non-cover crop carbon sequestration technology fields because they cannot increase their
sequestration further, given their netputs.

The median real sequestration shadow prices are 0.93 acres per tCO2 eq. for e�cient cover
crop fields and 1.33 acres per tCO2 eq. for e�cient non-cover crop fields. This suggests that
carbon sequestration can be increased by a tCO2 eq. by adding an additional 0.93 (1.33)
acres of cover crop (non-cover crop fields). These correspond to approximately 2% of the
median land area for both field types. Shadow prices for non-cover crop fields are 43.01%
higher than cover crop fields given the absence of carbon sequestration-enhancing practices
in non-cover crop fields.

While real shadow prices are helpful, nominal shadow prices provide insight when com-
pared with prevailing carbon market prices. We use equation (26) to convert real shadow
prices into nominal ones, measured in USD per tCO2 eq. The equation relies on the N used
per acre and N prices in the crop year. The median nominal sequestration shadow prices
for e�cient cover and non-cover crop fields are USD 75.60 and 98.33 per tCO2 eq. for 2021.
This suggests e�cient cover crop fields would incur a marginal cost of USD 75.60 to increase
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Table 4 Summary of carbon sequestration and GHG emissions shadow values for e�cient fields in acres of land
per tCO2 eq. and USD per tCO2 eq. by cover crop use.

Panel A: Carbon sequestration shadow prices

Cover crop field
N = 36

max{ˆsH
S(.)}

Non-cover crop field
N = 204

max{ˆsH
S(.)}

(1) (2) (1) (2)

Median 0.93 75.60 1.33 98.33
p25 0.46 39.89 0.58 43.70
p75 1.33 107.89 2.82 209.50

Panel B: GHG emissions shadow prices

Cover crop field
N = 17

min{ˆeH
E(.)}

Non-cover crop field
N = 124

min{ˆeH
E(.)}

(1) (2) (1) (2)

Median -1.48 -90.47 -0.69 -50.78
p25 -1.98 -181.32 -2.04 -164.71
p75 -0.28 -23.88 0.01 0.61

Note: Column (1) indicates shadow values in acres per tCO2 eq. (real shadow values) and column (2) indicates shadow
values in USD per tCO2 eq. (nominal shadow values). Nominal shadow values are obtained by multiplying the real
values by N applied per acre and N price. p25 and p75 denote the first and third quartiles, respectively.

carbon sequestration by an additional tCO2 eq. The marginal cost for e�cient non-cover crop
fields is USD 98.33, a 30.02% larger. In summary, carbon sequestration shadow prices sug-
gest that non-cover crop fields face higher marginal costs for increasing carbon sequestration
compared to cover crop fields.

Our assumption that certain netputs are weakly disposable limits our ability to extrapolate
beyond the observed data. Hence, GHG emissions shadow prices are reported for 17 cover
crop and 124 non-cover crop fields. The median real GHG emissions shadow prices for e�cient
cover crop and non-cover crop fields are -1.48 and -0.69 acres per tCO2 eq. (Table 4, panel B,
columns (1)). The negative values result from the unintended nature of GHG emissions and
indicate the additional land area is required to reduce emissions marginally. For example,
crop fields need to expand the farmed area by an additional 1.48 acres to reduce their GHG
emissions by one tCO2 eq. Notice that the rest of the netputs are maintained constant,
which implies an extensification of production methods. Real GHG emissions shadow prices
for cover crop fields are 114.49% higher than for non-cover crop fields due to increasing
private marginal costs of mitigating GHG emissions. Because cover crop fields better adhere
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Table 5 Summary of carbon sequestration and GHG emissions shadow values for ine�cient non-cover crop
fields in acres of land per tCO2 eq. and USD per tCO2 eq.

Panel A: Carbon sequestration shadow prices

Non-cover crop field
N = 79

max{ˆsH
S(.)}

(1) (2)

Median 0.00 0.00
p25 0.00 0.00
p75 0.15 11.91

Panel B: GHG emissions shadow prices

Non-cover crop field
N = 93

min{ˆeH
E(.)}

(1) (2)

Median -0.44 -37.35
p25 -1.19 -107.27
p75 0.322 22.73

Note: Column (1) indicates shadow values in acres per tCO2 eq. (real shadow values) and column (2) indicates shadow
values in USD per tCO2 eq. (nominal shadow values). Nominal shadow values are obtained by multiplying the real
values by N applied per acre and N price. p25 and p75 denote the first and third quartiles, respectively.

to MRTN, they face larger marginal costs. The median real GHG emissions shadow prices
for e�cient cover crop and non-cover crop fields represent approximately 3.5% and 1% of
their respective median land areas.

We convert real GHG emissions shadow prices to nominal values using N applied per acre
and N price and present results in Table 4, panel B, column (2). Cover crop fields incur a
marginal cost of USD 90.47, while non-cover crop fields incur USD 50.78 for an additional
unit decrease in GHG emissions. GHG emissions shadow prices for cover crop fields are
77.91% higher than those for non-cover crop fields, implying increasing marginal costs to
reduce GHG emissions. This suggests that the latter can reduce GHG emissions at a lower
cost compared to fields that use conservation practices.

Table 5 provides summary statistics of carbon sequestration and GHG emissions shadow
prices for ine�cient non-cover crop fields. We do not report shadow prices for ine�cient cover
crop fields since all fields in the carbon sequestration technology (fields with XS

c (.) Ø XE
c (.))

are e�cient, and only 2 fields in the GHG emissions technology (fields with XS
c (.) Æ XE

c (.))
are ine�cient. The median carbon sequestration shadow price for ine�cient non-cover crop
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fields is 0.00 acre per tCO2 eq. This suggests that at least half of these ine�cient fields operate
in the region where the marginal cost of increasing carbon sequestration is zero. Hence,
ine�cient non-cover crop fields operate as if they were not compensated for sequestering
carbon. This is consistent with carbon market payments targeting the adoption of cover crops
to enhance carbon sequestration. The median GHG emissions shadow prices for ine�cient
non-cover crop fields are -0.44 acre per tCO2 eq. and -USD 37.35 per tCO2 eq. in real and
nominal terms, respectively. Thus, these fields would incur a marginal cost of USD 37.35 to
reduce GHG emissions by an additional tCO2 eq., which contrasts with e�cient non-cover
crop fields marginal costs of USD 50.78 per tCO2 eq. Combined, the marginal costs faced
by ine�cient non-cover crop fields suggest less attention to carbon footprint relative to their
e�cient counterparts.

4.1. Comparison of shadow values to current carbon market prices

Compliance carbon markets have emerged in response to regulatory mandates in the United
States. They function on a regional basis and cover only a small portion of the farmland.
While none of the compliance carbon markets apply to our sample fields, voluntary carbon
markets are available to all farms across the United States. Carbon markets may consist of
inset markets, o�set markets, or a blend. In inset markets, entities within the agribusiness
sector serve as carbon buyers, while o�set markets involve firms outside the agribusiness
sector. While some of these programs pay for outcomes (e.g., per tCO2 eq.), others pay by
practice (e.g., per acre). The latter requires a change in farming practice, such as reducing
N use or adopting cover crops.

Farms in our sample are paid by practice. The payment received depends on the program
in which the farmer enrolls and the practice adopted. Payments for cover crop adoption range
between USD 10 and USD 25 per acre and year (“Farmers for Soil Health,” PCM (2024a);
“New PepsiCo Incentive Payment Program,” (PCM 2024b)). We investigate whether these
payments compensate for the private value associated with the lower net carbon footprint of
cover crop fields compared to non-cover crop fields. We first transform nominal shadow prices
in Table 4 into USD per acre using equation (27), which relies on information regarding
carbon sequestration and GHG emissions per acre for each field.

Nominal shadow price
3

USD

acre

4
=

Nominal shadow price
A

USD

tCO2 eq.

B

◊ GHG emissions (Sequestration)
3

tCO2 eq.

acre

4 (27)
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Table 6 Summary of carbon sequestration and GHG emissions shadow prices for e�cient fields in USD per
tCO2 eq. and in USD per acre by cover crop use.

Panel A: Carbon sequestration shadow prices

Cover crop field
N = 36

max{ˆsH
S(.)}

Non-cover crop field
N = 204

max{ˆsH
S(.)}

Di�erence

(1) (2) (3) (1) (2) (3)

Median 75.60 0.40 34.68 98.33 0.12 16.80 17.88
p25 39.89 0.40 10.55 43.70 0.12 5.95 4.60
p75 107.89 0.55 58.78 209.50 0.26 41.33 17.45

Panel B: GHG emissions shadow prices

Cover crop field
N = 17

min{ˆeH
E(.)}

Non-cover crop field
N = 124

min{ˆeH
E(.)}

Di�erence

(1) (2) (3) (1) (2) (3)

Median -90.47 0.28 -23.35 -50.78 0.29 -13.93 -9.42
p25 -181.32 0.25 -51.97 -164.71 0.25 -46.69 -5.28
p75 -23.88 0.32 -8.30 -0.61 0.32 -0.18 -8.12

Note: Column (1) indicates shadow values in USD per tCO2 eq. (nominal shadow values). These shadow prices are
reported in this table from Table 4 for convenience. Column (2) reports carbon sequestration per acre in panel A and
GHG emissions per acre in panel B. Column (3) reports shadow prices in USD per acre. Carbon sequestration (GHG
emissions) shadow prices in USD per acre are calculated as the product of shadow prices in USD per tCO2 eq. and
sequestration (GHG emissions) per acre. Di�erence presents the di�erence in shadow prices (USD per acre, column
3) between cover crop and non-cover crop fields. p25 and p75 denote the first and third quartiles, respectively.

We present results in Table 6. Columns (1) replicate the nominal shadow prices (in USD

per tCO2) from Table 4 for convenience. Columns (2) report the carbon sequestration and

GHG emissions per acre. Finally, columns (3) report the shadow price in USD per acre,

which results from the product of columns (1) and (2). Although cover crop fields have a

lower marginal cost of increasing sequestration by a ton of CO2, their sequestration cost per

acre exceeds that of non-cover crop fields. This discrepancy arises from the higher seques-

tration per acre in cover crop fields compared to non-cover crop fields (0.40 vs. 0.12). The

di�erence in median sequestration shadow prices between our field categories is USD 17.88

per acre (USD 34.68 – USD 16.80), representing the compensation that cover crop fields

should receive for their sequestration services. Likewise, the di�erence in median GHG emis-

sions shadow prices between our field categories is USD 9.42 per acre (USD 23.35 - USD

13.93), providing an estimate of the compensation that cover crop fields should receive for
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their emissions mitigation services. Thus, for 2021, the total economic incentive for cover
crop fields, considering carbon sequestration and GHG emissions reduction benefits of cover
crops, should be USD 27.30 per acre (USD 17.88 + USD 9.42). This is above current cover
crop adoption payments fluctuating between USD 10 - USD 25 per acre per year.

While cover crop adoption in the Midwest reached 7.2% in 2021, a significant increase
from 1.8% a decade ago (Quinn 2022), the insu�cient carbon payments may limit broader
adoption of the agricultural practice. This underscores the significance of ecosystem service
markets, where farmers receive payments for di�erent environmental services, including car-
bon and water quality payments. Adopting cover crops can mitigate N runo�; thus, ecosystem
service markets compensate cover crop fields for their reduced carbon and water pollution
footprint. Since these payments can be stacked, they usually range between USD 25 and
USD 50 per acre, averaging USD 35 per acre (Farmdoc 2023). Therefore, adopting cover
crops becomes more appealing for farms through participation in ecosystem service markets.

5. Endnotes

1We do not consider compliance carbon markets as they currently have limited relevance for agriculture, covering
only a small portion of the US farmland. At present, no compliance carbon market regulates Illinois fields.
2The main microbial processes that produce N2O are nitrification and denitrification of available N in the soil
(Robertson and Gro�man 2007, Signor and Cerri 2013).
3These constraints eliminate the need to run linear problems (24) and (25) separately for e�cient and ine�cient
fields.
4As a result, x6 only reflects soil type but not soil management.
5We use the sample mean of N price whereas the corn price per bushel is the same across our sample fields.

6. Conclusions

We use management-science and operations-research methods to value the carbon benefits of
cover crop fields compared to non-cover crop fields. To achieve this, we estimate the shadow
prices of agricultural field-level carbon sequestration and GHG emissions, building upon the
methodology proposed by Murty et al. (2012). This is the first article that o�ers shadow
prices for carbon sequestration. We model the agricultural production technology as the
intersection between the carbon sequestration sub-technology that generates crop revenue
and sequesters carbon and the GHG emissions sub-technology.

We use the dual representation of the technology to calculate shadow prices, expressed
relative to land, which serves as our numeraire. We model cover and non-cover crop fields
as two separate production practices and report shadow values for each field type. Although
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we do not factor land ine�ciencies into the calculation of shadow values, we report shadow
prices for e�cient and ine�cient fields separately.

We use a unique field-level Illinois corn growers dataset that provides carbon sequestration
and GHG emissions estimates. Median carbon sequestration shadow prices for e�cient cover
crop and non-cover crop fields are USD 75.60 and USD 98.33 per tCO2 eq. The median GHG
emissions shadow values for e�cient cover crop and non-cover crop fields are USD 90.47 and
USD 50.78 per tCO2 eq. Our carbon sequestration shadow prices are consistent with the
superior ability of cover crop fields to sequester carbon. GHG emissions’ shadow prices are
consistent with cover crop fields’ superior compliance with the University of Illinois recom-
mended nitrogen rates and with increasing marginal costs of GHG emissions mitigation. The
shadow prices for ine�cient fields are lower than for e�cient fields, suggesting less atten-
tion to carbon footprint relative to their e�cient counterparts. By comparing marginal costs
between di�erent field types, we establish that the net carbon benefit associated with cover
crops relative to non-cover crops is valued at USD 27.30 per acre.

We compare this value with payments o�ered in voluntary carbon markets, which usually
compensate farmers for adopting certain agronomic practices, especially cover crops. Our
sample fields receive USD 10 to USD 25 per acre to cut their net carbon footprint (“Farmers
for Soil Health” PCM (2024a); “New PepsiCo Incentive Payment Program” PCM (2024b)).
This implies that only those fields at the higher payment range come close to covering the
estimated USD 27.30 per acre, which suggests that these markets rarely o�set the full cost
of the practice. Ecosystem service markets have recently gained momentum as they o�er
payments for di�erent environmental services. Since these markets allow stacking payments
for di�erent concepts, e.g., carbon and water quality payments, they o�er a better incentive
for adopting cover crops and increasing the supply of carbon o�sets.

Our findings hold significant relevance for policymakers. We find that generating additional
carbon o�sets from Illinois fields may require higher payments, underscoring the importance
of further promoting environmental service markets that enable farmers to capitalize on dif-
ferent environmental services. For businesses seeking sustainable and cost-e�ective strategies
to o�set their carbon footprint, agriculture emerges as a valuable supply source for addi-
tional carbon o�sets. This may be particularly important for publicly traded companies if
the Securities and Exchange Commission (SEC) implemented its climate change disclosure
rulemaking, or if other states passed laws along the California’s Climate Corporate Data



Kunwar et al.: Net carbon benefits value of cover crops
Article submitted to Management Science; manuscript no. MS-0001-1922.65 27

Accountability Act. Our results suggest further supply of o�sets from agriculture could be
generated, though the costs of acquiring these o�sets may surpass current market values.

Information on actual carbon sequestration and GHG emissions from sample fields, as
opposed to an estimation based on input use, would help refine our shadow values. Our results
must be carefully interpreted, given that our sample of corn farms represents less than 1% of
the 11 million acres of corn for grain planted in Illinois in 2021 (NASS 2023). Our research is
also limited in the representativeness of our theoretical model. The latter relies only on the
carbon sequestration and GHG emissions sub-technologies within the agricultural production
technology while ignoring other by-products, such as soil erosion or water runo�. Including
these sub-technologies by building a more complex multi-input, multi-output technology
may allow for a better representation of the technology and estimation of shadow prices
for other environmental services provided by agriculture. However, this would make the
estimation of our model challenging, given the complex dynamics of such by-products within
the agricultural production system.
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Appendix

A. Dual tableau for linear problems XS
c (x≠1, n, p, y, s) and XE

c (x≠1, n, p, e)

Panel A: Dual tableau for X
S
c (x≠1, n, p, y, s)

“1 . . . “i . . . “I

k œ {2, . . . ,5, n, p} w
y
k ≠x1k . . . ≠xik . . . ≠xIk ≠xk

k œ {2, . . . ,5, n, p} w
Õy
k x1k . . . xik . . . xIk xk

k = 6 w
Õy
k ≠x1k . . . ≠xik . . . ≠xIk ≠xk

wy y1 . . . yi . . . yI y

ws s1 . . . si . . . sI s

„ 1 . . . 1 . . . 1 1

x11 . . . xi1 . . . xi1

Panel B: Dual tableau for X
E
c (x≠1, n, p, e)

µ1 . . . µi . . . µI

k œ {2, . . . ,5, n, p} w
e
k ≠x1k . . . ≠xik . . . ≠xIk ≠xk

k œ {2, . . . ,5, n, p} w
Õe
k x1k . . . xik . . . xIk xk

k = 6 w
Õe
k ≠x1k . . . ≠xik . . . ≠xIk ≠xk

we e1 . . . ei . . . eI e

w
Õ
e ≠e1 . . . ≠ei . . . ≠eI ≠e

◊ 1 . . . 1 . . . 1 1

x11 . . . xi1 . . . xi1
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B. Summary statistics of variables used in the analysis by cover crop use on a

per-field basis.

Cover crop field
N = 120

Non-cover crop field
N = 673

Median p25 p75 Median p25 p75

Revenue, (y) 46054.29 28777.82 73862.51 75274.50 41221.01 101717.07
Sequestration, (s) 23.62 10.97 34.11 9.22 5.07 18.03
GHG emissions, (e) 10.33 6.03 17.22 16.39 8.78 24.16
Nitrogen, (n) 8148.74 4720.19 13972.12 13417.24 7524.46 18222.92
Power costs, (p) 5780.62 3763.72 9634.43 7743.31 4343.51 10740.77
Land, (x1) 42.52 25.83 69.21 67.00 38.28 82.31
Seed cost, (x2) 5014.74 3107.91 8064.98 8043.60 4493.58 10003.49
Phosphorus, (x3) 2401.68 1240.86 3682.12 3922.65 1945.80 6799.95
Potassium, (x4) 3018.15 1523.58 4839.75 4727.40 2414.40 8248.41
Pesticide cost, (x5) 2827.91 1718.10 4829.58 4352.00 2444.95 6944.64
Organic matter, (x6) 0.08 0.04 0.17 0.08 0.05 0.98

Note: Source-PCM dataset. All netputs are expressed on a per-field basis. Revenue (y), power costs (p), seed cost

(x2) and pesticide cost (x5) are expressed in USD, carbon sequestration (s) and GHG emissions (e) in tCO2 eq.,

nitrogen (n), phosphorus (x3) and potassium (x4), in lbs., land (x1) in acres, and organic matter (x6) in percentage.

p25 and p75 denote the first and third quartiles, respectively.

C. Percentage of corn farms in di�erent categories based on maximum returns to N

rate and most profitable N range by cover crop use.

Cover crop field (%)
N = 120

Non-over crop field (%)
N = 673

Below MRTN 47.50 31.20
Above MRTN 52.50 68.80
Total 100.00 100.00

Below profitable range 34.17 14.86
Within profitable range 27.50 37.30
Above profitable range 38.33 47.85
Total 100.00 100.00

Note: Source- PCM dataset and own elaboration.
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