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Abstract

We study the Ray (2007) overall inefficiency measure and its generalization by Aparicio et

al. (2013) for general convex technologies. We show that it admits an alternative inter-

pretation as measuring the maximal input (output) inefficiency consistent with projecting

an observed input-output bundle by the same proportion in predetermined directions. We

relate this interpretation to elasticity measures defined by Balk et al. (2015) and Podinovski

et al. (2016) and show that the overall inefficiency measure reduces to a directional input

(output) inefficiency measure for translation-homothetic technologies. A dual formulation of

the overall inefficiency measure shows that it corresponds to the saddlepoint of a problem

that computes a “ price-restricted indicator function”.

Key words: data envelopment analysis, overall inefficiency measure, translation homo-

theticity, input-output inefficiency, endogenous shadow prices



Introduction

Ray (2007) defined an overall inefficiency measure as the solution to a shadow profit max-

imization problem. Aparicio, Pastor, and Ray (2013) developed a generalization of Ray’s

(2007) measure that also generalized Luenberger’s (1992) shortage function. A defining char-

acteristic of the Ray (2007) and Aparicio et al. (2013) measures is that they allow input

and output adjustment by different proportions in predetermined input-output directions

(−v, u).

We study such measures for general convex technologies that incorporate the canonical

DEA framework as an important special case. We show that the resulting overall inefficiency

measure admits an alternative interpretation as measuring the maximal input (output) inef-

ficiency consistent with projecting an observed input-output bundle by the same proportion

in the direction (v, u). We use that observation to relate the overall inefficiency measure to

elasticity measures defined by Balk, Färe, and Karagiannis (2015) and Podinovski, Cham-

bers, Atici, and Deineko (2016) and to show that the overall inefficiency measure reduces

to a directional input (output) inefficiency measure for translation-homothetic technologies.

The innate connection between the overall inefficiency measure and translation-homothetic

technologies ensures that it, unlike the directional measures it generalizes, does not provide

an exhaustive cardinal characterization of T . We use a dual-space formulation of the over-

all inefficiency measure to reveal its natural interpretation as a “price-restricted indicator

function”.

In what follows, we first introduce basic notation, the model of the technology, and stan-

dard results on directional inefficiency measurement. We then demonstrate our alternative

interpretation, its relation to measures of translatability and translation-homothetic tech-

nologies, and characterize the measure for convex technologies. The penultimate section

presents a dual-space formulation of the overall inefficiency measure, and the final section

concludes.
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Notation and Model

Let R̄ ≡ [−∞,∞] denote the extended real numbers. Define the subdifferential correspon-

dence, ∂xf : RK ⇒ RK∗, for f : RK → R̄ proper and closed convex by1

∂xf (x) ≡
{
q ∈ RK∗ : q′ (y − x) ≤ f (y)− f (x) ∀y ∈ RK

}
and f ′s (one-sided) directional derivative (in the direction v) by

Dv
x ◦ f (x) ≡ limλ↓0

f (x+ λv)− f (x)

λ
.

Let the technology be represented by T ⊂ RN+M
+ that is nonempty, closed, and convex.

For given v ∈ RN
+\ {0} , u ∈ RM

+ \ {0}, we assume that T satisfies

(x, y) ∈ T ⇒ (x+ µv, y − λu) ∈ T µ ≥ 0, λ ≥ 0, (x+ µv, y − λu) ∈ RN+M
+ . (1)

We refer to (1) as goodness in the direction (v,−u) and note that it weakens free disposability

of inputs and outputs to monotonicity the direction (v,−u). Define the directional input

inefficiency measure, Ivx : RN+M
+ → R̄, as

Ivx (x, y) ≡ inf {γ ∈ R : (x+ γv, y) ∈ T} (2)

and the directional output inefficiency measure, Iuy : RM+N
+ → R̄, as

Iuy (y, x) ≡ inf {µ ∈ R : (x, y − µu) ∈ T} . (3)

The input and output inefficiency measures are versions of Luenberger’s (1992) shortage func-

tion and correspond, respectively, to (minus) input and output directional distance functions.

We have (all proofs are in an Appendix):

Lemma 1 Ivx (x, y) satisfies: a) Ivx (x, y) ≤ 0⇔ (x, y) ∈ T (Indication); b) Ivx (x+ αv, y) =

Ivx (x, y) − α, α ∈ R (Translation); c) Ivx (x, y) is nonincreasing in the direction (v,−u)

(Monotonicity); and d) convex in (x, y). (Convexity)

Lemma 2 Iuy (y, x) satisfies: a) Iuy (x, y) ≤ 0⇔ (x, y) ∈ T (Indication); b) Iuy (y + αu, x) =

Iuy (y, x)+α, α ∈ R (Translation); c) Iux (y, x) is nonincreasing in the direction (v,−u); and

d) convex in (x, y) (Convexity).
1RK∗ is the dual space of RK and equals RK . We preserve the notational distinction to clarify which

maps are defined in terms of primal variables and which are defined in terms of dual variables.
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Alternative Representations of Overall Inefficiency

Following Ray (2007) and Aparicio et al. (2013), define the generalized overall inefficiency

measure, O : RN
+ × RM

+ → R̄, as:

Ou
v (x, y) ≡ sup {β + φ : (x− βv, y + φu) ∈ T} . (4)

We follow Ray (2007) and leave β, φ ∈ R free. Aparicio et al. (2013) restrict both to be

positive, so formulation (4) is a slight generalization of their measure.2 Our first results

provide alternative representations of Ou
v (x, y).

Proposition 3

Ou
v (x, y) = sup

φ∈R
{φ− Ivx (x, y + φu)} (5)

= − inf
φ∈R
{Ivx (x+ φv, y + φu)} (6)

Proposition 4

Ou
x (x, y) = supβ∈R

{
β − Iuy (y, x− βv)

}
(7)

= −infβ∈R
{
Iuy (y − βu, x− βv)

}
(8)

Propositions 3 and 4 offer different perspectives on the overall inefficiency problem.

Where Ray (2007) and Aparicio et al. (2013) emphasize its interpretation as a generalized di-

rectional distance measure, these propositions show that Ou
v (x, y) also measures inefficiency

associated with translating (x, y) by the same proportion in the direction (v, u) instead of

(−v, u).3

Figure 1 illustrates version (5) in Proposition 3 for an (x, y) ∈ T .4 In their study of

marginal valuation for polyhedral technologies, Podinovski et al. (2016) call Ivx (x, y + φu) a

directional response function. It measures the maximal amount that x can be translated in

the direction v, while keeping y + φu technically feasible. By Lemma 1, it is nonpositive at

2Aparicio et al. (2013) work in a DEA framework . Thus, the inequality restriction is more natural in

their setting than in ours.
3Ray and Yang (2022, p.22, their expression (25)) report an analogue of Proposition 4 in a single-input,

single-output setting.
4Parallel visual illustrations exist for Proposition 4 but are not treated to conserve space.
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φ = 0 and nondecreasing and convex as a function of φ. Proposition 3 shows that Ou
x (x, y)

maximizes the difference between the proportional movement of y in the direction of u and

this directional response function. That difference is illustrated in Figure 1 by the vertical

distance between the line through the origin with slope of 1 (the bisector) and the graph of

Ivx (x, y + φu). The maximal difference occurs where the slope of the graph Ivx (x, y + φu) in

φ equals the slope of the line. But when Iuv (x, y + φu) is smooth, that slope equals

lim
φ−φ∗→0

Ivx (x+, y + (φ− φ∗)u+ φ∗u)− Ivx (x, y + φu)

φ− φ∗
= Du

y ◦ I (x, y + φ∗u) .

Figure 2 illustrates formulation (6). The task is now to find the projection of (x, y)

in the direction (v, u) that achieves maximal directional input inefficiency. That maximal

difference occurs where the horizontal distance (more generally, in the direction v) between

the projections of (x, y) in the direction (v, u)

{(x̂, ŷ) : (x̂, ŷ) = (x+ φv, y + φu) , φ ∈ R} ,

and T ′s boundary is the largest. That requires that the slope of T ′s boundary equal that

of the line segment describing the projections. The point to which (x, y) is projected on the

hyperplane is (x+ φ∗v, y + φ∗u) while (x− β∗v, y + φ∗u) depicts the corresponding solution

to formulation (4).

We formalize these visual arguments in:

Proposition 5

Ou
v (x, y) = φ∗ − Ivx (x, y + φ∗u)

= −Ivx (x+ φ∗v, y + φ∗u)

if and only if

Du
y ◦ Ivx (x, y + φ∗u) ≥ 1 ≥ −D−uy ◦ Ivx (x, y + φ∗u) (9)

and

D
(v,u)
(x,y) ◦ I

v
x (x+ φ∗v, y + φ∗u) ≥ 0 ≥ −D−(v,u)(x,y) ◦ I

v
x (x+ φ∗v, y + φ∗u) (10)
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Proposition 6

Ou
v (x, y) = β∗ − Iyx (y, x− β∗u)

= −Iyx (y − β∗u, x− β∗u)

if and only if

Dv
x ◦ Iuy (y, x− β∗v) ≥ 1 ≥ −D−vx ◦ Iuy (y, x− β∗v)

and

D
(u,v)
(y,x) ◦ I

u
y (y − β∗u, x− β∗v) ≥ 0 ≥ −D−(u,v)(y,x) ◦ I

u
y (y − β∗u, x− β∗v)

Propositions 5 and 6 show that a) (x+ φ∗v, y + φ∗u) and b) (x− β∗v, y − β∗u) occur,

respectively, where:

a) A one unit proportional movement of y in the direction of u requires at least a one

unit proportional movement of x in the direction of v to keep inefficiency constant, and a

unit proportional movement of y in the direction of −u requires no more than a one unit

proportional movement of x in the direction of −v to keep inefficiency constant.

b) A one unit proportional movement of x in the direction of v requires at least a one

unit proportional movement of y in the direction of u to keep inefficiency constant, and a

unit proportional movement of x in the direction of −v requires no more than a one unit

proportional movement of y in the direction of −u to keep inefficiency constant.

By analogy with Balk, Färe, and Karagiannis (2015) and Podinovski et al. (2016), we

refer to Propositions 5 and 6 as requiring constant returns to translation in the direction

(v, u) at (x+ φ∗v, y + φ∗u) and (x− β∗v, y − β∗u).5

These propositions suggest that technologies that are translatable in the direction (v, u)

possess uniquely tractable versions of Ou
v . Our next result verifies this intuition. Following

5Balk et al. (2015) develop results for everywhere smooth (differentiable) T . The convexity of

Ivx (x, y + φu) in φ ensures that it is almost everywhere differentiable when it is finite. Thus, their anal-

ysis applies almost everywhere. We develop their measure in our notation in an Appendix to verify its

equivalence to the forms in Propositions 5 and 6. Nevertheless, Ou
v was formulated in a DEA setting where

smoothness violations at efficient points are routine. Propositions 5 and 6 cover these cases. Linear pro-

gramming algorithms for calculating the relevant directional derivatives can be adapted from those reported

in Podinovski et al. (2016) and Roos, Terlaky, and Vial (2005).
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Chambers and Färe (1998), we define T as translation homothetic in the directions (v, u) if

(x, y) ∈ T ⇔ (x+ αv, u+ αu) ∈ T, α ∈ R.

We have:

Proposition 7 − Ou
v (x, y) = Ivx (x, y) for all (x, y) if and only if T is translation homoth-

etic.

Proposition 8 − Ou
v (x, y) = Iuy (y, x) for all (x, y) if and only if T is translation homoth-

etic.

The usefulness of Ou
v as a measure of the translatability of T highlights an important

difference between it and the directional input and output inefficiency measures. Those

latter functions satisfy what we have called “Indication” that ensures that they characterize

the set T . Signs differences aside, Ou
v (x, y) ≥ 0 shares “one direction” of Indication because

(x, y) ∈ T ⇒ Ou
v (x, y) ≥ 0. But

Ou
v (x, y) ≥ 0 ; (x, y) ∈ T.

The reason is a natural consequence of the general properties of Ou
v (x, y) established in:

Proposition 9 a) (x, y) ∈ T ⇒ Ou
x (x, y) ≥ 0; b) Ou

v (x+ αv, y + αu) = Ou
v (x, y) for a ∈ R

(Translation Invariance); c) Ou
v (x, y) is nondecreasing in the direction (v,−u) (Monotonic-

ity); d) Ou
v (x, y) is concave in (x, y) (Concavity).

Property b), Translation Invariance, implies that if one identifies an (x, y) ∈ T for which

Ou
v (x, y) ≥ 0, then translating (x, y) in the direction (v, u) leaves measured inefficiency

unchanged. If it is also true that

Ou
v (x, y) ≥ 0⇒ (x, y) ∈ T,

that unchanged inefficiency then implies T is translation homothetic. But T exist that are

not translation homothetic. Hence, Ou
v (x, y) ≥ 0 ; (x, y) ∈ T. One verifies this result

visually using Figure 2. There (x̂, ŷ) /∈ T , but its associated overall inefficiency measure is

positive.
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Dual Characterizations of Ou
v (x, y)

We now study dual characterizations of Ou
v (x, y) . Define the indicator function for T , δ :

RN+M → R̄, as

δ (x, y) =

0 if (x, y) ∈ T

∞ otherwise.

(11)

For nonempty, convex T , δ (x, y) is proper, closed, and sublinear (positively homogeneous

and convex). The cost, revenue, and profit functions are all conjugate functions of δ (x, y).

Let (w, p) denote the input and output prices. The cost function, c : RN∗ × RM → R̄, is

given by

c (w, y) = inf
x
{w′x+ δ (x, y)} ; (12)

the revenue function R : RM∗ × RN → R̄ by

R (p, x) = sup
y
{py − δ (x, y)} ; (13)

and the profit function, π : RN∗ × RM∗ → R̄, by

π (w, p) = sup
x,y
{p′y − w′x− δ (x, y)} . (14)

The cost function is proper, closed, and superlinear in w, while the profit and revenue

functions are proper, closed, and sublinear in prices. For convex T , the cost function is

convex as a function of y, and the revenue function is concave as a function of x. Each dual

function is conjugate dual to δ(x, y). (See, for example, Rockafellar (1970, Theorem 13.2).)

To avoid repeating arguments, in what follows, we only consider the conjugate relation

between π (w, p) and δ (x, y) given by (14) and

δ (x, y) = sup
(w,p)

{p′y − w′x− π (w, p)} (15)

The next lemma summarizes known results on the relationships between the directional

inefficiency measures and the dual characterizations of T (Luenberger 1992; Chambers,

Chung, and Färe 1996):
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Lemma 10

Ivx (x, y) = sup
w
{c (w, y)− w′x : w′v = 1}

= sup
w,p
{p′y − w′x− π (w, p) : w′v = 1}

Iuy (y, x) = sup
p
{py −R (p, x) : p′u = 1}

= sup
w,p
{py − wx− π (w, p) : p′u = 1}

Together Lemma 10 and Propositions 3 and 4 give:

Proposition 11

Ou
v (x, y) = sup

φ
inf
w
{φ+ wx− c (w, y + φu) : w′v = 1}

= sup
β

inf
p
{β +R (p, x− βv)− p′y : p′u = 1}

= sup
φ

inf
w,p
{φ+ π (w, p)− p (y + φu) + w′x : w′v = 1}

= sup
β

inf
w,p
{β + π (w, p)− py + w (x− βv) : p′u = 1} (16)

Each expression in Proposition 11 manifests the same principle. Ou
v (x, y) is the value of a

saddle-point solution to a program that maximizes a concave function of directional move-

ment in input or output space while minimizing a convex function (over (w, p)) measuring

the difference between optimal performance (the cost function, the revenue function, or the

profit function) and the decision maker’s performance (cost, revenue, or profit) for hypo-

thetical shadow prices. Ray (2007) and Aparicio et al. (2013) frame the difference between

actual and optimal performance as “foregone profit”. Proposition 11 shows that their results

extend to measure “foregone” revenue and cost.

The saddle-point nature of Ou
v (x, y) is an immediate consequence of the dual formulation

of Ray’s (2007) original problem for general T as:6

Ou
v (x, y) ≡ inf

w,p
{π (w, p)− p′y + w′x : p′u = 1, w′v = 1}

= inf
w,p

sup
λ
{γ + π (w, p)− p′ (y + γu) + w′x : w′v = 1}

= inf
w,p

sup
λ
{λ+ π (w, p)− p′y + w′ (x− λv) : p′u = 1} , (17)

6Ray (2007) works in a DEA setting and requires p′y = 1 and w′x = 1. See his expressions (12) and

(12a). Also see expression (28) in Aparicio et al. (2013).
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where γ and λ are Lagrange multipliers. Convexity ensures the equivalence of (16) and (17).

In the absence of the price-normalizing constraints, Ray’s (2007) problem reduces to

(15), and its solution value is −δ (x, y). As the supremum of a superlinear function, δ (x, y)’s

“on-off” nature has the analytic advantage that it signals whether (x, y) ∈ T but that same

structure limits it usefulness for practical measurement. Figure 3 illustrates. By (14),

δ (x, y) ≥ p′y − w′x− π (w, p) ∀ (x, y, w, p) .

Because (x, y) ∈ T ⇒ δ (x, y) = 0, any feasible (x, y) must be associated with a (dual)

hyperplane majorized by the graph of π (w, p), which is partially depicted by the convex

surface 0ABC. Nonfeasible input-output combinations, on the other hand, are associated

with hyperplanes majorizing 0ABC for which p′y − w′x − π (w, p) > 0. The homogeneity

property of profit functions ensures that negative differences can be made arbitrarily small

and positive differences arbitrarily large, hence expression (15).

Choosing a numeraire to normalize prices resolves the boundedness problem in practical

settings. One can choose normalizations that result in an inefficiency measure that satisfies

Indication. For example, if one only imposes w′v = 1 in (17), the input direction is the

numeraire and the feasible region in Figure 3 is illustrated by the plane that passes through(
1
v
, 0, 0,

)
parallel to the (p, π) plane (not drawn). And by Lemma 10, that choice generates

the directional input inefficiency measure. Similarly, using u as the numeraire gives the

directional output measure. Imposing both results in Ou
v (x, y). That observation suggests

that a natural interpretation of the three inefficiency measures is as price-restricted indicator

functions.

Ray (2007, p. 233) does not work with indicator functions, so his motivation for normal-

ization arises from different concerns. He measures foregone profit as the difference between

maximal profit at shadow prices (w, p) that ensure

p′y − w′x = 0.

Nevertheless, the practical effect in Ray’s (2007) formulation is the same because introducing

a homogeneous constraint in a linear-programming setting permits unbounded solutions.

His solution is to achieve the zero-profit condition by requiring p′y = 1 and w′x = 1,
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which in economics terms is equivalent to choosing two commodity bundles to define the

numeraire.7 This solves the computational issue associated with a homogenous constraint

and permits different proportional movement in input and outputs, but it also requires that

equi-proportional changes in (x, y) in the direction of the numeraire bundles v and u must

cancel one another out. The result is a translation-invariant Ou
v .

A finite solution to (16) and (17) exists if and only if there exist (w, p, β, φ) satisfying

1− w′v = 0 (18)

∂wπ (w, p) + x− βv 3 0 (19)

∂pπ (w, p)− y − φu 3 0 (20)

1− p′u = 0. (21)

Expressions (18) and (21) require that the shadow values of the “directions” u and v equal

one. Expressions (19) and (20) reiterate Hotelling’s Lemma and require that the translates

of (x, y), (x− βv, y + φu), are profit maximizing at (w, p, β, φ).

Multiplying (19) by optimal w and (20) by optimal p gives

β = w′ (x− x (w, p))

φ = p′ (y (w, p)− y) and

Ou
v (x, y) = β + φ,

where x (w, p) ∈ −∂wπ (w, p) and y (w, p) ∈ ∂pπ (w, p) are profit-maximizing demand and

supply vectors evaluated at the solution (w, p). The connection between Ou
v (x, y) and the

shadow values associated with its dual formulation reflects the superlinearity of that prob-

lem’s objective function. Moreover, it reinforces the interpretation of Ou
v as a restricted

indicator function.

Because w′(x−x(w,p))
Ou

v (x,y)
and p′(y−y(w,p))

Ou
v (x,y)

sum to one,8 we can rewrite (19 and 20) as requiring

(x, y) +Ou
v (x, y) (−αv, (1− α)u) ∈ (−∂wπ (w, p) , ∂pπ (w, p)) α ∈ R, (22)

7While multiple numeraire are uncommon in economics, they are commonplace in linear-programming

formulations of the inefficiency measurement problem. Examples include the well-known Pareto-Koopmans

measure suggested by Charnes, Cooper, Golany, Seiford, and Stutz (1985).
8They can differ in sign.
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at an optimum. In Ray’s (2007) terminology, the endogenous projection(s)9 of (x, y) onto the

profit-maximizing frontier, (−∂wπ (w, p) , ∂pπ (w, p)), occurs where the sum of (x, y) with a

radial projection of an element of the line segment passing through −v and u is profit

maximizing. The length of that radial projection is determined by Ou
v (x, y). Figure 4

illustrates. There the curve labelled π̄ in the northeast quadrant is the isoprofit contour for

the shadow-price solution (w, p). The normal to its tangent hyperplane at the solution gives

minus the profit-maximizing demand vector and the profit maximizing outputs for those

shadow prices and is labelled (∂wπ, ∂pπ) . The relation between (−x, y), the endogenous

direction vector, and (∂wπ, ∂pπ) is portrayed in the northwest quadrant.10 There the dotted

line segment that passes through −Ou
vv and Ou

vu portrays the potentially optimal endogenous

directions.

Concluding Remarks

We studied the overall inefficiency measure for convex technologies. We showed that the

measure admits an alternative interpretation as measuring the maximal input (output) inef-

ficiency consistent with projecting an observed input-output bundle by the same proportion

in predetermined directions. We used that interpretation to demonstrate its relation to

“translation elasticity” measures, to show that the measure reduces to a directional input

(output) inefficiency measure for translation-homothetic technologies, to characterize Ou
v ’s

behavior in (x, y), and to develop dual versions of the measure for general convex tech-

nologies. We showed that the overall inefficiency score corresponds to the saddlepoint of a

problem that computes a “ price-restricted indicator function”.

9Recall (−∂wπ (w, p) , ∂pπ (w, p)) is a correspondence.
10In the two-dimensional case, the optimal shadow prices are determined by the normalizing constraints.

We ignore this detail in depicting the solution in Figure 4.
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Appendix: Proofs

Proof. Lemma 1 and Lemma 2: We only prove Lemma 2, the proof for Lemma 1

is parallel. Properties b) and d) are standard (Luenberger 1992; Chambers, Chung, and

Färe 1996, 1998). For a) ⇐ follows by definition because (x, y − 0u) is feasible. ⇒ By

definition,
(
x, y − Iuy (y, x)u

)
∈ T, and goodness in the direction (v,−u) implies (x, y) ∈ T

for Iuy (y, x) ≤ 0. For c), by definition
(
x, y − Iuy (y, x)u

)
∈ T . Goodness in the direction

(v,−u) implies
(
x+ βv, y − µu− Iuy (y, x)u

)
∈ T for µ, β ≥ 0 and the result is a consequence

of the definition of an infimum.

Proof. Propositions 2. We only prove Proposition 3, the proof for Proposition 4 is parallel.

To show (5):

Ou
v (x, y) = sup {β + φ : (x− βv, y + φu) ∈ T}

= sup {φ+ sup {β : (x− βv, y + φu) ∈ T}}

= sup {φ− inf {θ : (x+ θv, y + φu) ∈ T}}

= sup {φ− Ivx (x, y + φu)}

The second equality follows by Bellman’s Principle, the third by changing variables, and the

fourth from the definition of Ivx . Lemma 1.b implies

φ− Ivx (x, y + φu) = −Ivx (x+ φv, y + φu) ,

which establishes (6).

Proof. Propositions: 5 and 6. The proof is for Proposition 5. We first show (10) and then

show that (10) implies (9). ⇒ By Proposition 3,

Ou
v (x, y) = −Ivx (x+ φ∗v, y + φ∗u)

if and only if

Ivx (x+ φv, y + φu)− Ivx (x+ φ∗v, y + φ∗u) ≥ 0 ∀φ.

For φ > φ∗, dividing both sides of this inequality by φ > φ∗ and taking a one-sided limit

gives

limφ−φ∗↓0
Ivx (x+ φv, y + φu)− Ivx (x+ φ∗v, y + φ∗u)

φ− φ∗
≥ 0,

13



or

D
(v,u)
(x,y) ◦ I

v
x (x+ φ∗v, y + φ∗u) ≥ 0.

Reversing the sign φ− φ∗, similar arguments show that

−D−(v,u)(x,y) ◦ I
v
x (x+ φ∗v, y + φ∗u) ≤ 0.

establishing necessity.

To show (9), use Lemma1.b (Translation) to rewrite

limφ−φ∗↓0
Ivx (x+ φv, y + φu)− Ivx (x+ φ∗v, y + φ∗u)

φ− φ∗
≥ 0,

as

limφ−φ∗↓0
φ∗ − φ+ Ivx (x, y + φu)− Ivx (x, v, y + φ∗u)

φ− φ∗
≥ 0,

and the result follows immediately.

⇐ Convexity of Ivx ensures that the minimum(a) at φ∗ implied by the condition is global.

Proof. Propositions 7 and 8: We prove Proposition 7. By definition

Ou
v (x, y) = sup {β + φ : (x− βv, y + φu) ∈ T}

= sup {β + φ : (x− (β + φ) v, y) ∈ T} (23)

Expression (23) follows by translation homotheticity and equals −Ivx (x, y). To go the other

way, suppose that by hypothesis and Proposition 3,

−Ivx (x, y) ≥ β − Ivx (x, y + βu) ∀β ∈ R,

whence

Ivx (x, y + βu)− Ivx (x, y) ≥ β ∀β ∈ R.

Because β can be either positive or negative, the last inequality and Lemma 1.b imply

Ivx (x+ βv, y + βu) = Ivx (x, y) ∀β ∈ R,

and Lemma 1.a gives the result.
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Proof. Proposition 9 a) (x, y) ∈ T ⇒ Ivx (x, y) ≤ 0 by Lemma 1. Hence

inf
φ
{Ivx (x+ φv, y + φu)} ≤ Ivx (x, y) ≤ 0,

and the result follows by the definition of an infimum. b)

−Ou
v (x+ αv, y + αu) = sup {β + φ : (x+ αv − βv, y + αu+ φu) ∈ T}

= sup {β + φ : (x− (β − α) v, y + (α + φ)u) ∈ T}

= sup {(β − α) + (α + φ) : (x− (β − α) v, y + (α + φ)u) ∈ T}

c) Let φ∗ solve (6). Then

Ivx (x+ αv + φ∗v, y − αu+ φ∗u) ≤ Ivx (x+ φ∗v, y + φ∗u)

for α ≥ 0 by Lemma 1.c, and the conclusion follows immediately. d) follows by Lemma 1.

d.

Appendix: The Translation Elasticity

Balk, Färe, and Karagiannis (2015) treat a technology with frontier {(x, y) : F (x, y) = 0}.

By Lemma 1 both Ivx and Iuy are potential candidates for F . We treat the case where

F (x, y) ≡ Ivx (x, y). Let α ∈ R and define µ (α, x, y) as the implicit solution to

Ivx (x+ αv, y + µ (α, x, y) v) = 0

with µ (α, x, y) → 0 as α → 0 if Ivx (x, y) = 0. By convexity, Ivx is almost everywhere

differentiable. Balk et al. (2015) define the translation elasticity, εuv (x, y), as

εuv (x, y) ≡ ∂µ (α, x, y)

∂α
|α→0.

Performing the indicated differentiation gives

εuv (x, y) = −D
v
x ◦ Ivx (x, y)

Du
y ◦ Ivx (x, y)

.

By Translation (Lemma 1. b)

Ivx (x+ λv, y) = Ivx (x, y) + λ

15



whence

Dv
x ◦ Ivx (x+ λv, y) = lim

λ→0

Ivx (x+ λv, y)− Ivx (x, y)

λ

=
Ivx (x, y)− λ− Ivx (x, y)

λ

= −1

Therefore,

εuv (x, y) =
1

Du
y ◦ Ivx (x, y)

.
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