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1 Introduction

Evaluating the efficiency of a decision maker’s performance requires an objective standard

for comparison and a measurement tool. Farrell (1957) early developed methods for single-

output, constant returns to scale technologies. Charnes, Cooper, and Rhodes (1978) ex-

tended Farrell’s approach to mutiple-output technologies. Simultaneously, Färe and Lovell

(1978) clarified the relationship between Farrell’s efficiency measure and Shephard’s (1953,

1970) distance functions. Banker, Charnes, and Cooper (1984) showed how to accommodate

nonconstant returns in the Cooper et al. (1978) Data Envelopment Analysis (DEA) model,

how to relate DEA to Shephard’s (1970) axioms, and the relationship between DEA effi-

ciency measures, Shephard’s input (output) distance functions, and minimal cost (maximal

revenue) functions.

These methods were ratio-based. Farrell (1957) measured inefficiency as actual cost

divided by minimal cost, and Charnes et al. (1978) posed their problem as a fractional pro-

gram. These measures proved attractive for comparing relative cost (revenue) performance

and were widely applied. But similar approaches for relative profit performance remained

elusive. A practical problem was the ratio-based criterion that struggled with negative or

zero profits.

Following Nerlove (1965), Chambers, Chung, and Färe (1998) showed how to adapt Luen-

berger’s (1992) shortage function to profit-based comparisons. The key ideas were to adopt

a difference-based approach and to measure technical inefficiency in units of a predetermined

input-output vector (“the direction”). The introduction of directional measures emphasized

an inherent arbitrariness in measuring technical inefficiency. In that approach, the direc-

tion serves as the numeraire and determines the units of the inefficiency measure. But the

directional choice resides with the analyst and remains arbitrary. That arbitrariness soon

prompted a raft of competing inefficiency measures (see, for example, Briec and Lesourd

1999; Pastor, Ruiz, and Sirvent 1999; Portela and Thanassoulis 2007; Ray 2007; Cooper,

Pastor, Aparicio, and Borras 2011; Zofio, Pastor, and Aparicio 2013).

We study the objective choice of inefficiency measures. Our analysis uses a generalization

of a “price-based” approach pioneered by Charnes et al. (1978) and Ray (2007) to induce
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an objective technical inefficiency measure. The approach seeks “real shadow prices” that

make a decision maker’s performance as economically efficient as possible. Our focus is on

how the numeraire choice affects the point on the efficient frontier to which the decision

maker’s performance is compared, the induced technical inefficiency measure, and whether

the induced inefficiency measure offers a cardinal representation of the technology. The

analysis is for general technologies, but we illustrate its applicability to the polyhedral setting

that is a cornerstone of many applied studies.

We show that a natural complementarity exists between the chosen numeraire, the techni-

cal inefficiency measure, and the ability of that measure to characterize the technology. These

results permit inferences on the objective identification of inefficiency measures and cardinal

representations of technologies that accommodate known shortcomings of the canonical free

disposal hull model. We use these results to introduce an inefficiency measure, the polyhedral

inefficiency measure, that encompasses a broad array of existing measures as special cases.

Section 2 introduces notation and the model. Section 3 treats the problem of isolating

the point(s) on the technology’s frontier used to evaluate a decision maker’s performance

and to define a technical inefficiency measure. Section 4 details the properties of the derived

inefficiency measure and develops conditions required for the inefficiency measure to be a

cardinal representation of the underlying technology. Section 5 introduces the polyhedral

inefficiency measure and examines some of its different manifestations. Section 6 concludes.

2 Notation and the Model

Let R̄ = R∪{−∞,∞}. For f : RS → R̄ define its subdifferential correspondence, ∂f : RS ⇒

RS∗, by

∂f (x) ≡
{
q ∈ RS∗ : q′ (z − x) ≤ f (z)− f (z)

}
,

and its (one-sided) directional derivative in the direction v, f v : RS → R, by

f v (x) ≡ limµ↓0
f (x+ µv)− f (x)

µ
.
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Define the indicator function, δ : RS → {0,∞} , for X ⊂ RS by

(1) δ (x|X) =

0 if x ∈ X

∞ otherwise.

Expression (1) shows that the indicator function characterizes X in the sense that knowledge

of X and it are equivalent. In what follows, we refer to it as an Indication Property.1 δ (x|X)

is proper,2 closed,3 and sublinear (positively homogeneous and convex) as a function of x if

X is closed, nonempty, and convex.

We model feasible production outcomes (the technology) by Z ⊂ RS that is nonempty,

closed, and convex. To preserve generality and notational simplicity, we treat production

outcomes as “netputs”. The traditional distinction between inputs and outputs is available

by setting z = (−x, y) where x ∈ RN
+ denotes inputs and y ∈ RM

+ denotes outputs. The

recession (asymptotic) cone for Z is:

Z∞ ≡
{
d ∈ RS : Z + βd ⊂ Z, β ≥ 0

}
.

Z admits different interpretations. For example, it could represent a technology set, an

output set, or an input set. For concreteness sake, we adopt the technology-set metaphor. We

can relax the convexity assumption on Z. But because we base our measure on a comparison

with what is profit maximizing, little generality loss results from restricting attention to

convex structures. Nonconvex technology sets are economically indistinguishable from their

convex hulls. (Example 6 below illustrates).

1This use of the term, Indication, differs from that in the axiomatic inefficiency-measurement literature

(for example, Russell and Schworm 2009). There, “Indication” means that if an inefficiency index takes on

a critical value, typically one or zero, it signals that the observation is technically efficient.
2A convex function f is proper if its effective domain,

dom (f) ≡
{
x ∈ RS : f (x) <∞

}
is nonempty and f (x) > −∞ for all x.

3A function is closed if its closure is the function itself. For proper convex functions, closedness is

equivalent to lower semi-continuity (Rockafellar 1970, p. 52).
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The support function for Z, δ∗ : RS∗ → R̄, is

δ∗ (q|Z) ≡ sup {q′z : z ∈ Z}

= sup
z∈RS

{q′z − δ (z|Z)}(2)

δ∗ is proper, closed, and sublinear as a function of q ∈ RS∗, and by (2) it is the (convex)

conjugate function of δ. We call it the profit function, but it is open to other interpretations.

By standard results (for example, Rockafellar 1970):

δ (z|Z) = sup
q∈RS∗

{q′z − δ∗ (q|Z)}(3)

z ∈ ∂δ∗ (q|Z) ⇔ q ∈ ∂δ (z|Z) (Shephard-Hotelling Lemma)(4)

Expression (3) reflects the dual conjugacy of δ (z|Z) and δ∗ (q|Z). Expression (4), the

Shephard-Hotelling Lemma in economics, says that z solves (2) if and only if q solves (3).

Q ⊂ RS∗ is nonempty, closed, convex, and satisfies 0 ∈ Q. We interpret RS∗, RS’s dual

space, as price space.4 To accommodate the potential for “good” and “bad” netputs, prices

can be either positive or negative. The gauge function for Q, γ : RS∗ → R̄, is defined

(5) γ (q) ≡ inf {µ > 0 : q ∈ µQ} .

γ (q) is proper, closed, and sublinear as a function of q,5 and provides a cardinal representa-

tion of Q (Rockafellar 1970)

(6) Q =
{
q ∈ RS∗ : γ (q) ≤ 1

}

3 The Inefficiency Measure

We follow Nerlove (1965) and evaluate the decision maker’s performance, z ∈ RS, using the

difference between z′s value at prices, q ∈ RS∗, and maximal profit

(7) q′z − δ∗ (q|Z) .

4RS∗, of course, equals RS . We maintain the notational distinction to ensure a similar distinction between

quantities and prices.
5As a sublinear function, γ (q) also represents the support function for the closed, convex set{

z ∈ RS : q′z ≤ γ (q) ∀q
}
.
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We interpret (7) as (minus) profit foregone at prices q by operating at z.6 By (3)

δ (z|Z) ≥ q′z − δ∗ (q|Z) ∀ (z, q) (Fenchel’s Inequality)

so that z ∈ Z implies

0 ≥ q′z − δ∗ (q|Z) ∀q.

Foregone profit is positively homogeneous in q, reflecting its nominal nature. That positive

homogeneity is reflected in the “either-or” nature of the indicator function as the supremum

of a sublinear function. When z ∈ Z, the supremum is achieved at zero, but when z /∈ Z,

the supremum is arbitrarily large. Thus, δ (z|Z), as its name implies, “indicates” when z

is technically feasible and when it is not. But it contains no information on where z falls

in Z. To achieve such a measure, we convert from nominal (money) terms to real terms by

deflating prices by a common numeraire. Specifically, we interpret γ (q) as a price index7 and

use it to deflate prices and profit to obtain the (real) economic inefficiency (EI) measure,

EI : RS∗ × RS → R,

(8) EI (q, z) ≡ q′z − δ∗ (q|Z)

γ (q)
= −δ

∗ (q|Z − z)

γ (q) ,

where Z − z denotes Z translated one unit in the direction −z. The positive homogeneity

of γ (q) ensures that EI (q, z) is homogeneous of degree zero in q and, thus, invariant to

rescaling prices. We call γ (q) the numeraire.

Farrell (1957) decomposed inefficiency into a technical inefficiency component and an

allocative inefficiency component. To generate an analogous decomposition, we choose ẑ ∈

∂δ∗ (q̂|Z) for some q̂ and then subtract zero in the form q′ (ẑ − ẑ) from (8) to get

(9) EI (q, z) =
q′ (z − ẑ) + q′ẑ − δ∗ (q|Z)

γ (q)
.

6Foregone profit can be redefined to be positive. Our definition emphasizes the connection of our technical

inefficiency measure to the conjugate dual functions δ and δ∗.
7There are different options and interpretations. For example, the ideal producer price index for a given

bundle of inputs is defined by its revenue function, which is sublinear. Similarly, an ideal consumer price

index is defined as an expenditure function for a reference utility (Konüs 1939; Malmquist 1953; Blackorby,

Primont, and Russell 1978). A simpler option, which is the basis of the Paasche and Laspeyres indices and

directional and radial distance measures (see Section 5), is to choose a fixed netput bundle g ∈ RS and set

γ (q) = q′g.
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We judge the technical inefficiency (TI) of z using the first component of (9),

q′ (z − ẑ)

γ (q)
,

and its allocative inefficiency (AI) by the residual

q′ẑ − δ∗ (q|Z)

γ (q)
.

TI measures the real value of the move from z to the frontier of Z in the direction (ẑ − z)

and AI measures the real value of the move from ẑ to the efficient ∂δ∗ (q|Z). Other possible

decompositions, of course, exist. Accommodating them requires adjusting arguments, but

the same principles apply.

To provide an objective basis for choosing ẑ, we follow Charnes et al. (1978) and Ray

(2007) and isolate it using variational methods that identify the real price vector(s) for which

real foregone profit at z,
q′z − δ∗ (q|Z)

γ (q)
,

is maximized.8 We convert this fractional problem to a constrained one using the same

normalization strategy as Charnes et al. (1978). We solve9

δQ (z|Z) ≡ sup
q∈RS∗

{q′z − δ∗ (q|Z) : γ (q) = 1}(10)

Problem (10) resembles the conjugate problem (3) that recaptures δ (z|Z) from δ∗ (q|Z), but

it restricts the price search to ensure that the numeraire’s value is one. The notation δQ

evokes its interpretation as a restricted indicator function that permits cardinal inefficiency

comparisons. Denote the solution set for (10) as:

q (z) ∈ arg sup {q′z − δ∗ (q|Z) : γ (q) = 1} .

For δQ (z|Z) is finite, the necessary and sufficient conditions require

(11) q′z − δ∗q (q (z) |Z)− λγq (q (z)) ≤ 0 ∀q ∈ RS∗

8Charnes et al. (1978) maximized the ratio of real shadow revenue to real shadow cost, and Ray (2007)

used a profit-based criterion.
9Here we assume that γ used in the definition of EI is the same as γ used in (10). Other choices are

possible, so long as they maintain sublinearity. Choosing a different deflator than γ (q) in (9) requires

adjusting our ultimate decomposition. To avoid the accompanying proliferation of notation, we treat γ (q)

in (9).
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and

0 ∈ z − ∂δ∗ (q (z) |Z)− λ∂γ (q (z))(12)

0 = 1− γ (q (z))(13)

where λ is a Lagrange multiplier (for example, Rockafellar (1970) Theorems 28.1 and 29.1

and their corollaries). Expression (11) requires that the directional derivative of the La-

grangean bifunction, taken with respect to q, be nonincreasing in all directions at an opti-

mum. Expression (12) and the Shephard-Hotelling Lemma (4) require that an element of

the correspondence, z − λ∂γ (q (z)), maximizes profit for q (z). Expression (13) repeats the

numeraire normalization. The elements of ∂δ∗ (q (z) |Z) are our candidates for ẑ. We follow

Ray (2007) and call them endogenous projections.

Evaluating (11) at q (z) and −q (z) gives10

q (z)′ z − δ∗ (q (z) |Z) ≤ λ ≤ q (z)′ z − δ∗ (q (z) |Z)

so that λ = δQ (z|Z) at a solution. By standard results, optimal λ is the shadow value

(an element of the subdifferential of δQ) of a perturbation in the numeraire constraint. It

equalling the optimal value of the program manifests the superlinear nature of the objective

function. It also reinforces the crucial role that the numeraire choice plays in converting the

potentially unbounded programming problem defining δ (z|Z) into a cardinal inefficiency

measure.

The endogenous projections satisfy

(14) z − δQ (z|Z) ∂γ (q (z)) ∩ ∂δ∗ (q (z)) 6= ∅.

Example 1 Let γ (q) = ‖q‖, the standard Euclidean norm. Then almost everywhere,

∂γ (q) = q
‖q‖ and ∂γ (0) =

{
z ∈ RS : z′q ≤ ‖q‖ ∀q ∈ RS∗}. Thus, its endogenous projec-

10The positive homogeneity of δ∗ and γ in q ensure that

δ∗q(z) (q (z) |Z) = δ (q (z) |Z)

γq(z) (q (z)) = γ (q (z)) .
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tions satisfy (almost everywhere)

z − δQ (z|Z)
q (z)

‖q (z) ‖
∈ ∂δ∗ (q (z)) .

Example 2 Let γ (q) = max {q1, q2, . . . , qS}. Then

∂γ (q) = co
{
ek : k ∈Mq

}
,

where co {X} denotes the convex hull of X ⊂ RS, es ∈ RS is the sth element of the standard

orthonormal basis, and Mq = {k : qk = max {q1, q2, . . . , qS}} is the active-index set. An

endogenous projection satisfies

z − δQ (z|Z) co
{
ek : k ∈Mq

}
∩ ∂δ∗ (q (z)) 6= ∅.

Remark 3 Formulate (10) in Lagrangean terms as

δQ (z|Z) = inf
λ

sup
q
{λ+ q′z − δ ∗ (q)− λγ (q)} ,

where λ is a Lagrangean multiplier. Standard results (for example, Rockafellar 1970, Theo-

rem 28.4 and its corollary) and the preceding arguments ensure that

δQ (z|Z) = inf
λ

{
λ+ sup

q
{q′z − δ∗ (q)− λγ (q)}

}
= inf

λ,q
{λ : z − ∂δ∗ (q)− λ∂γ (q)} .

Following Ray (2007), δQ represents a directional inefficiency measure with an “endogenous

direction” selected from ∂γ (q).

As Example 2 illustrates, a solution requires that z−δQ (z|Z) ∂γ (q) and ∂δ∗ (q|Z) overlap.

Because both are correspondences, not all elements of both sets necessarily fall in their

intersection. Therefore, some elements of ∂γ (q) may provide a solution while others do not.

To distinguish the elements of ∂γ (q (z)) that are solutions, we denote them by g (z) ∈ RS.

Using the endogenous projections of z, we have

(15) EI (q, z) =

TI︷ ︸︸ ︷
δQ (z|Z) q′g (z) +

AI︷ ︸︸ ︷
q′
(
z − δQg (z)

)
− δ∗ (q)

γ (q)
.
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TI, which is the product of two parts, δQ and q′g(z)
γ(q)

, measures the real economic value of the

move from z to its endogenous projection, δ (q (z)). AI measures the real market value of the

adjustment from the endogenous projection to the economically efficient, ∂δ∗ (q|Z). Figure

1 illustrates. Counting in units of z2, -EI is given by the distance AC on the vertical axis,

-TI by the distance AB, and -AI by the distance BC.

4 Properties of δQ (z|Z)

We have:

Proposition 4 a) z ∈ Z ⇒ δQ (z|Z) ≤ 0; b)

δ∗ (q|Z) + δ (q|Q) ≤ sup
z

{
q′z − δQ (z|Z)

}
≡ δQ∗ (q|Z) ;

and c) δQ (z|Z) is convex as a function of z.

Proof. a) By Fenchel’s Inequality, δ (z|Z) ≥ q′z−δ∗ (q) for all (z, q). By definition z ∈ Z ⇒

δ (z|Z) = 0 whence z ∈ Z ⇒ 0 ≥ q′y − δ∗ (q|Z) for all q and the result. b) By construction,

ϕ (z) ≡ sup
q
{q′z − δ∗ (q|Z)− δ (q|Q)}

= sup
q
{q′z − δ∗ (q|Z) : q ∈ Q}

≥ δQ (z|Z) .(16)

The inequality follows because {q : γ (q) = 1} ⊂ Q. ϕ (z) is the conjugate function of the

proper, closed, convex function δ∗ (q|Z) + δ (q|Q), whence

δ∗ (q|Z) + δ (q|Q) = sup
z
{q′z − ϕ (z)}

(Rockafellar 1970, Theorem 12.2). The claim follows from (16).

c) Let q̄ be an optimizer for µz0 +(1− µ) z0, µ ∈ (0, 1). Because q̄ is feasible, δQ (z0|Z) ≥

q̄z0 − δ∗ (q̄|Z) and δQ (z1|Z) ≥ q̄z1 − δ∗ (q̄|Z). Multiplying the first by µ, the second by

(1− µ), adding, and using the definition of q̄ gives

µδQ
(
z0|Z

)
+ (1− µ) δQ

(
z1|Z

)
≥ δQ

(
µz0 + (1− µ) z0|Z

)
,
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establishing the desired convexity.

Convexity (Proposition 4.c) ensures that δQ (z|Z) is continuous everywhere on the rel-

ative interior of its effective domain,
{
z : δQ (z|Z) <∞

}
. Proposition 4.b establishes that

its conjugate function, δQ∗ (q|Z), bounds for the sum of the profit function for Z and the

indicator function for Q. δQ∗ (q|Z) is closed and convex as a function of q (Rockafellar 1970

Theorem 12.2). Thus, for any q feasible for (10), δ∗ (q|Z) ≤ δQ∗ (q|Z). The inequality be-

tween these two conjugate function manifests the one-sided nature of Proposition 4.a, which

ensures that z ∈ Z ⇒ δQ (z|Z) ≤ 0 but not that δQ (z|Z) ≤ 0 ⇒ z ∈ Z. Figure 2 illus-

trates a closed, convex, and nonempty Z for which δQ (z|Z) < 0, but z /∈ Z. The figure

illustrates a situation where continuous movement from the endogenous projection in the

directions z − ∂δ∗ (q (z) |Z) passes through regions outside Z. Hence, z /∈ Z can exist for

which δQ (z|Z) < 0.

The technical difficulty that Figure 2 illustrates is a bounded Z for which Z∞ = {0}. Our

assumptions permit this. We can ensure δQ that satisfies an Indication property by endowing

Z with an appropriate recession cone. In production-economics parlance, we can assume Z

satisfies an appropriate disposability property. Or, in inefficiency-analysis parlance, we can

impose an appropriate Inefficiency Postulate. Expression (14) the choice of an Inefficiency

Postulate that ensures Indication. Requiring movements from ∂δ∗ (q|Z), which lies on the

boundary of Z, in the directions11 −∂γ (q (z) |Z) to remain in Z works.

Remark 5 By Proposition 4, if −∂γ (q (z)) ∈ Z∞ for all z,

δQ (z|Z) ≤ 0⇔ z ∈ Z (Indication).

The argument is as follows. By expression (14)

z − δQ (z|Z) ∂γ (q (z)) ∈ ∂δ∗ (q (z) |Z) ,

and δQ (z|Z) ≤ 0 gives the claim. The obvious shortcoming is that ∂γ (q (z)) is determined

endogenously. A priori, such a restriction can be vacuous For example, if γ (q) = ‖q‖ as in

Example 1, so that (almost everywhere) ∂γ (q) = q
‖q‖ .

11Recall ∂γ (q (z) |Z) is correspondence.
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Nevertheless, Remark 5 highlights the natural complementarity between the numeraire

choice and the class of technologies that can be characterized by the inefficiency measure that

the numeraire induces. Except in unusual circumstances, Z’s true structure is unknown. To

accommodate that problem, Banker et al.’s (1984) Minimum Extrapolation Postulate requires

that an empirical approximation to Z be the smallest subset of RS containing the data that

is consistent with accepted properties (postulates) of Z. In its original formulation, the

Banker et al. (1984) Inefficiency Postulate posits that Z∞ = RS
−, free disposability of inputs

and outputs.12

It is well understood that free disposability of inputs and outputs can clash with the

first law of thermodynamics and can be inconsistent with the presence of undesireable by-

products, input-output congestion (see, for example, Ray 2004, pp. 176-185), and other

characteristics of physical production processes. A vibrant literature treats the design of

models to accommodate such problems. A principal focus is the appropriate form of an

Inefficiency Postulate (see, for example, Podinovski and Kuosmanen (2011) and Murty and

Russell (2022).) The import of Remark 5 and the surrounding discussion is that resolution

of that issue can have important implications for the choice of a numeraire in designing an

inefficiency measure.

Example 6 Let there be T observations, ut ∈ RS, on decision-maker performance. Denote

the data cloud by

U ≡
{
u1, u2, . . . , uT

}
.

The profit function for U is

δ∗ (q|U) = sup
z
{q′z : z ∈ U}

= sup {q′z : z ∈ co {U}}

= δ∗ (q|co {U})

with

∂δ∗ (q|Z) = co
{
uk : k ∈MU

}
12This Inefficiency Postulate is often maintained in axiomatic treatments of inefficiency measures (see, for

example, Russell and Schworm 2009, 2011).
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where

co {U} =

{
z ∈ RS : z =

T∑
t=1

λtu
t, λt ≥ 0 ∀t,

T∑
t=1

λt = 1

}
,

and MU =
{
k : q′uk = δ∗ (q|Z)

}
is an active-index set and co

{
uk : k ∈MU

}
⊂ co {U}. The

minimum-extrapolation technology consistent with U and a profit-maximization postulate is

co {U}.13 Figure 3 illustrates co {U} as the triangle with vertices at the data points u1, u2, and

u3. Because co {U} is bounded, its recession cone is 0 and does not permit free disposability

of inputs or outputs. Its boundedness implies that δ∗ (q|co {U}) is finite for all q ∈ RS∗

(for example, Rockafellar 1970, Corollary 13.2.2). The canonical DEA technology is the free

disposal hull of co{U},

F {co {U}} ≡

{
z ∈ RS : z ≤

T∑
t=1

λtu
t, λt ≥ 0 ∀t,

T∑
t=1

λt = 1

}
.

with recession cone RS
−. co {U} ⊂ F {co {U}} and, thus, is the“more conservative approx-

imation” to Z. Because F {co {U}} has a nontrivial recession cone, δ∗ (q|F {co {U}}) is

not everywhere finite. In particular, δ∗ (q|F {co {U}}) = ∞ for q ∈ RS
− and, generally,

δ∗ (q|F {co {U}}) ≥ δ∗ (q|co {U}). Points such as u3 in Figure 3, associated with a negative

shadow price for z1, can belong to ∂δ∗ (q|co {U}) but they cannot belong to ∂δ∗ (q|F {co {U}}).

Many studies do not treat Indication as a critical criterion for an inefficiency measure.

The reasoning is that inefficiency measures are meant to study situations where the assump-

tion that a common Z generated the data cloud is legitimate. Therefore, the analyst’s only

interest is the measure’s ability to characterize or measure distance from a frontier, part a) of

Proposition 4. For example, axiomatic derivations of inefficiency measures often restrict the

domains for their derived measures to subsets of RS that are feasible for technologies satisfy-

ing a prescribed set of regularity conditions (for example, Russell and Schworm 2009, 2011).

Remark 5’s takeaway message for such instances, and more generally for applied inefficiency

measurement, is that the nexus between the numeraire choice and the requirements for In-

dication should guide formulation of the prescribed regularity conditions. At a minimum, it

seems desireable that ‘regularity’ conditions should be consistent with our understanding of

13Hence, the Banker et al. (1984) Convexity Postulate and the profit maximization hypothesis identify

the same minimum extrapolation of U .
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the way the physical universe operates. Inefficiency measures requiring regularity properties

inconsonant with the physical problem must remain problematic.

5 A polyhedral inefficiency measure

Figure 3 and Example 6 illustrate the practical problem of designing an inefficiency mea-

sure that accommodates a technology whose upper boundary (the production function) has

regions where it is negatively sloped. Even the most basic economic formulation of a tech-

nology, the lazy-S shaped production function familiar to introductory-economics students,

exhibits regions of negative marginal returns. The economic relevance of such regions is

ruled out by demonstrating that an economically rational producer would never locate at

such points. But the same argument shows that economically rational producers never pro-

duce inefficiently. We now study a class of gauge functions that provide some flexibility in

accomodating such practical circumstances.

5.1 The Inefficiency Measure

Let G =
{
g1, g2, . . . , gK

}
with each gk ∈ RS and

D ≡ ∩Kk=1

{
q ∈ RS∗ : q′gk ≤ 1

}
.

As the intersection of a finite number of closed, convex half spaces, D ∈ RS∗ is closed, convex,

and contains 0. Its gauge is the polyhedral convex function

γD (q) = max
{
q′g1, q′g2, . . . , q′gK

}
with

∂γD (q) = co {gk : k ∈MG} ,

where MG =
{
k : q′gk = γD (q)

}
is an active-index set and co {gk : k ∈MG} ⊂ co {G}.

We define a polyhedral inefficiency measure (for D) as

δD (z|Z) ≡ sup
q

{
q′z − δ∗ (q|Z) : γD (q) = 1

}
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Because co {gk : k ∈MG} ⊂ co {G}, its endogenous projections must satisfy

z − δD (z|Z)

{
g ∈ RS : g =

K∑
k=1

µkg
k, ∀µk ≥ 0,

K∑
k=1

µk = 1

}
∩ ∂δ∗ (q|Z) 6= ∅.

Thus, the polyhedral inefficiency measure is interpretable as a directional inefficiency mea-

sure that permits different proportional movements in K different directions. The different

proportions are determined by the product of δD (z|Z) and the optimal selection variables

(the µ′ks) for the convex hull of MG. Thus, δD generalizes the Ray (2007) and Aparicio et

al. (2013) overall inefficiency measure to an arbitrary number of directions which have the

ability to accommodate a variety of recession cones for Z.

Example 7

δD (z|co {U}) = sup
q

{
q′z − δ∗ (q|co {U}) : γD (q) = 1

}
= inf

λ
{λ : z − λco {G} ∈ ∂δ∗ (q|co {U})}

Figure 4 illustrates for co {U} and G = {g1, g2}. The endogenous projection for z is u1. Here

δD (z) < 0.

We have:

Corollary 8 : a) z ∈ Z ⇒ δD (z|Z) ≤ 0; b) δD (z|Z) is convex in z; c) δD
(
z + α

∑
k g

k|Z
)

=

δD (z|Z) + α, α ∈ R (Enumeration); and d) if −co {G} ⊂ Z∞,

δD (z) ≤ 0⇒ z ∈ Z (Indication).

Proof. a) and b) are established in Proposition 4. d) is an immediate consequence of Remark

5 and the discussion in the text. To show b), note that by the Lagrangean formulation of

(10)

δD

(
z +

∑
k

gk|Z

)
= infλ,q

{
λ : z + α

∑
k

gk − λco {G} ∩ ∂δ∗ (q|Z) 6= ∅

}

But

z + α
∑
k

gk − λco {G}

14



equals

−

{
K∑
k=1

µk
(
(λ− α) gk − z

)
, ∀µk ≥ 0,

K∑
k=1

µk = 1

}
,

whence

δD

(
z +

∑
k

gk|Z

)
= infβ,q

{
β : −

{
K∑
k=1

µk
(
βgk − z

)
, ∀µk ≥ 0,

K∑
k=1

µk = 1

}
∩ ∂δ∗ (q|Z) 6= ∅

}
+ α,

where β ≡ λ− α.

Enumeration (Corollary 8.c) is the natural extension of the translation property of directional

inefficiency measures to arbitrary dimensions.

5.2 Special Cases

We now relate δD (z|Z) to existing inefficiency measures that encompass both “path-based”

and “slacks-based” inefficiency measures (Russell and Schworm 2017). The results are for

arbitrary convex technologies even though some measures have only been specified for DEA

models.

5.2.1 Path-based measures

Luenberger Shortage or Directional Distance : Letting K=1 and g1 ∈ RS gives Lu-

enberger’s (1992) shortage function or its directional distance function analogue (Chambers,

Chung, and Färe 1996, 1998) as δD. If −g1 ∈ Z∞, δD (z|Z) satisfies Indication. An histor-

ically important special case is Allais’s (1943) Disposable Surplus for netput k obtained by

setting K=1 and g1 = ek. The shortage function provides one means to accommodate fail-

ures of free disposability. For example, if netputs 1, 2,...,J < S are freely disposable while the

remaining netputs are not, one can set K=1 and g1 = (1, 1, . . . , 1, 0, . . . , 0). Then −g1 ∈ Z∞
permits Indication without imposing overall free disposability.

Gauges, Radial Distance Function, Sub-vector gauges : Let K=1 and g1 = z to

induce, depending upon the interpretation of Z, δD as a Minkowski (1911) functional (gauge)

or a radial distance function (Debreu 1951, Shephard 1953, Malmquist 1953). Requiring

λZ ⊂ Z ( for λ ≤ 1 weak disposability of all z) ensures Indication. Depending upon the
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interpretation, special cases include Farrell (1957), McFadden (1978), Charnes et al. (1978),

Briec (1997), Färe, He, Li, and Zelenyuk (2019), and others. Define the partition z = (z0, z1)

and take g1 = (z1, 0) to obtain a sub-vector radial measure of inefficiency (Färe, Grosskopf,

and Lovell 1988). Input and output distance functions are special cases.

Overall Inefficiency Measure : Let K=2 and g1 = (v, 0) where v ∈ RN and g2 =

(0, u) where u ∈ RS−N (Ray 2007; Aparicio et al. 2013). The corresponding gauge is

γD (q) = max {q1′v, q2′u}, where q1, q2 are conformable subvectors of q. Indication is satisfied

if −co {u, v} ⊂ Z∞.

5.2.2 Slacks-based measures

Russell-type Measures : Set K = S and gk = zke
k to induce an inefficiency mea-

sure with structure similar to the Russell measure introduced by Färe and Lovell (1978).14

Indication is satisfied if Z∞ = RS
−.

Pareto-Koopmans Measure : Let K = S and gk = ek

S
for all k. The induced δD

corresponds to the Pareto-Koopmans technical inefficiency measure introduced by Charnes,

Cooper, Golany, Seiford, and Stutz (1985). The resulting measure is − 1
S
δ∗ (1|Z − z). The

Pareto-Koopmans measure is a profit function for Z translated one unit in the direction

−z. Its commensurable form is obtained by setting gk = ek

zkS
when all zk 6= 0. Indication is

satisfied if Z∞ = RS
−.

Weighted Average Inefficiency Measure : Let K = S and gk = ek

wk
, for wk >

0, k = 1, . . . , S. Special cases include weighted average score introduced by Lovell and

Pastor (1995) and studied by Cooper, Pastor, Aparicio, and Borras (2011). The Fukuyama

and Weber (2009) “directional slacks-based measure” is the special case that corresponds

to gk = ek

dk
, where dk are interpreted as directions. The similarity to the Russell-type and

Pareto-Koopmans measures is apparent.

14Many studies refer to such measures as Russell measures. But Russell and Schworm (2009) refer to them

as Färe-Lovell measures. Hence, our “Russell-type” terminology.
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Partial Slacks : Another way to accommodate the lack of free disposability in certain

directions is to specify a Luenberger (1992) measure with a direction containing 0 elements. A

slacks-based approach that permits different proportional adjustments in properly disposable

regions is to take K < S and specify (after appropriate choice of indices) gk = ek, k =

1, . . . , K.

6 Concluding Remarks

For general technologies, we studied a “price-based” approach to generating inefficiency

measures. We showed how the numeraire choice determines the endogenous projection,

the technical inefficiency measure, and the restrictions on the technology’s recession cone

required to ensure Indication. We showed that the induced technical inefficiency measure’s

conjugate function bounds the sum of support function for Z and the indicator function forQ.

We used these results to derive an inefficiency measure, the polyhedral inefficiency measure,

that unites a broad array of existing measures under a single rubric that accommodates

technologies with varying recession cones.

The demonstration that a broad range of practical inefficiency measures reduce to special

cases of the polyhedral inefficiency measure implies that comparisons of their relative “rea-

sonableness” reduce to to judgments of the “reasonableness” of their numeraires. Economists

often treat normalization as a simple matter of setting one price equal to one. Such choices,

however, can result in a inefficiency measures (the analogue of Allais’s disposable surplus)

with properties that are unattractive to the inefficiency analyst. The general principle is

that seemingly harmless assumptions to the economist can assume central importance to

the inefficiency analyst. Unfortunately, the converse is also true, numeraire choices by the

inefficiency analyst can render measurement and decomposition of EI irrelevant.

Our analysis contrasts with the axiomatic or “test” approach initiated by Färe and Lovell

(1978).15 That approach postulates axioms (properties) that an inefficiency index “should”

possess for a technology that itself satisfies certain axioms (typically, free disposability, no

land of Cockaigne, and bounded output sets). Hence, in spirit, it parallels decision theory.

15See Russell and Schworm (2009, 2011, 2017) for state-of-the-art treatments.
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But where decision theory posits behavioral axioms, inefficiency axioms are less prosaic

and more purely mathematical. For example, Färe and Lovell’s (1978) original axioms were

Indication of Efficiency,16 Monotonicity, and Homogeneity. Moreover, where decision theory

uses its axioms to deduce specific preference representations, axiomatic inefficiency analyses

often treats its axioms as tests that pre-specified measures should pass.17

16See our earlier footnote on the Indication terminology.
17An exception is Chambers and Miller (2014) that uses an axiomatic approach to deduce classes of

inefficiency measures.
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