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Students in economics are introduced to broad concepts in early ECON classes and

expected to master them for more advanced study. Two such concepts are supply and

demand. Suppliers are individuals who sell goods or commodities in market exchanges, and

demanders are the buyers. These two forces are illustrated using a “scissors diagram” with

a downward sloping demand curve and an upward sloping supply curve.

These lectures are a guide to the fundamental economic model behind the supply shear of

the demand and supply scissors. Known as the “the theory of the producer” or “production

economics”, it describes the economic behavior of individuals who “make” commodities to

sell in a market. “Make” is interpreted to mean both physical production of a commodity

(for example, growing wheat) and delivering a service (for example, providing a taxi ride).

These lectures emerged from an undergraduate production economics class at the Uni-

versity of Maryland. In them, I try to distill the essence of that theory in a form that

is accessible to anyone with a rudimentary class in microeconomics and the usual doses of

high-school and first-year college mathematics. The essential ideas are due to others, and

no claim is made to originality. I have tried, however, to make the lectures rigorous but

accessible. Calculus-based arguments have been avoided. Many years of experience have

taught me that grounding economic concepts in calculus terms too often promotes mechan-

ical thinking that inhibits reasoning about more nuanced economic behavior. So while the

calculus makes cameo appearances, it never assumes a supporting, let alone a starring, role.

Instead, the argument relies on a geometric approach, grounded in convex analysis, that is

at the same time more basic but more rigorous. The key ideas are conveyed with pictures,

but they are rooted in results that I trace to R. T. Rockafellar’s Convex Analysis and J.J.

Moreau’s Fonctionnelles Convexes that form the basis of much of modern optimization the-

ory. In no small way, much of what I write here repeats arguments and analysis made in

my book Competitive Agents in Certain and Uncertain Market, which was intended for a

graduate-student audience, in a form that I hope is digestible to advanced undergraduate

students in economics.

Another characteristic of these lectures is that they take a “constructive” approach to

production economics. They start with simple concepts that reflect common axioms in mod-

ern production theory. Then they construct a representation of a technology by postulating
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the existence of observations on inputs and outputs and imposing those axioms on the data.

The lectures start with a general discussion of economic models. The takeaway message

is that economic models do not depict reality. Instead, they are intellectual tools, organized

around the principle of abstraction, that assist thinking about reality. Models have real-

istic kernels, but they contain unrealistic elements. Three chapters on different ways that

economists model the production of goods and services follow. I first introduce and discuss

the notion of the “technology”. And then starting from simple cases, I consider more general

structures. Four lectures on the neoclassical producer model follow. Each examines producer

behavior from a different perspective. But all assume, without apology, that producers are

profit seekers operating in a competitive environment. That means self interest motivates

their behavior and that they cannot affect the prices at which they buy or sell. Lecture 9

shows that the path taken in the preceding four lectures is reversible. If producer behavior

is consistent with accepted economic principles, there must exist a technology underpinning

it that is consistent with the technology model developed in Lectures 2 through 4. So, in a

way, Lecture 9 justifies Lectures 2-4’s focus on the model of the technology.
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The Role of Models in Economics

...reality may avoid the obligation to be of interest...hypotheses may not..

Lönrott to Treviranus in Death and the Compass by Jorge Borges

Parables are stories meant to convey a moral. They are simple so that the listener can

grasp the moral easily. Good economic models are similar. They identify a problem and

strip it of unnecessary detail to focus on its essence. Thus, economic models are abstract

rather than realistic. Abstraction promotes analysis, but it also makes economic models as

if in nature. The principle isn’t that models are realistic but that valuable lessons are learnt

by pretending as if they are.

As children, we learn something about transportation by playing with toy cars and some-

thing about cooking by playing with toy kitchens. Both a toy car and a toy kitchen are

models. Both convey information about their realistic counterparts. And just as children

enjoy playing with toys, they learn from them. Economists try to design their models so

that they, too, learn real-world lessons from them.

Economic models assume verbal, mathematical, and visual (read graphical) forms. Often,

they mix all three, and the forms are always interchangeable. Mathematical arguments

translate into plain English. If they don’t, something’s wrong. By the same token, a verbal

economic argument should be expressible mathematically. Economists illustrate their verbal

and mathematical arguments using two or three-dimensional graphs. Examples with which

you may be familiar include demand and supply curves. Just as mathematical arguments

translate into words, these pictures translate into either words or mathematics.

Economists use mathematics and graphs as tools to promote precision, to ensure logical

reasoning, to promote intuition, and to facilitate generalization from simpler to more complex

settings. Mathematical symbols also provide a ‘shorthand’ that replaces (harder to write)

strings of words. Once a symbol is defined, it can be used with other symbols to construct

meaningful (and precise) sentences. Graphs illustrate concepts phrased in either verbal or

mathematical terms in the belief that the adage, “a picture is worth a thousand words”, is

correct.

In working with a model, it’s crucial to stay within its confines. Results must trace to
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an element or elements of your model. They cannot emerge from factors implicitly imported

into your reasoning. If your model cannot capture behavior you wish to explain, consider

changing or adapting it to incorporate elements that might explain the phenomenon.

Thought Experiments and Models

Albert Einstein often illustrated complex reasoning using simple thought experiments. For

example, in Relativity: The Special and General Theory,1, he used images of a moving railway

carriage, a man standing on the railway carriage, a man on a railway platform, and lightning

strikes to explain his Special Theory of Relativity. His thought experiments are examples of

a rhetorical method that uses models spelt out in imaginary settings to convey an argument.

Thought experiments are important in economics, and most conceptual models are de-

signed to be used with them. Typically, they are hypothetical. The reader is asked to

imagine a plausible situation and then to make inferences about how individuals behave in

that setting. Their importance in economics emerges from the difficulty that economists

have in conducting controlled experiments. From your high-school science classes, you know

that a controlled experiment is one in which all possible sources of variation for the outcome

except one (the treatment) are held fixed.

Thinking about the complexity of the settings in which social transactions occur reveals

the difficulty of achieving such control in studying them. Physicians, sociologists, psycholo-

gists, neuroscientists, and economists strive to execute such experiments, but the outcomes

are often problematic. And with good reason. Imagine, for example, how two balls moving

towards one another react as they strike. A bit of physics gives the answer. Now imagine

the same setting when the two balls can think and control their trajectory. What happens

then? Social scientists study problems that are similar to those physicists study in that they

can involve physical interactions, but they differ in that those interactions involve thinking

individuals. True control becomes difficult if not impossible.

1Albert Einstein. 1920. Relativity: The Special and General Theory. Methuen and Co. Ltd. Translated

by Robert W. Lawson. Part 1, Section 09. Einstein intended this book for the general reader.
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Some Simple Mathematical Background

...plus nous avançons dans la connaissance de l’univers, plus il nous apparâıt

fondè sur des lois mathèmatiques.2

Hervè Le Tellier, L’anomalie. Gallimard.

Many readers may find repeated mentions of ‘mathematics’ daunting. Math anxiety3

is a common affliction that haunts many from elementary school on. Having suffered it, I

can empathize. But if you are afflicted, please take a deep breath and read on. For while

these lectures contain many mathematical symbols, that doesn’t mean that the underlying

ideas that the symbols represent are unfamiliar or something to which you cannot attach

an everday meaning. All can and will be explained in verbal and pictorial terms. While

we strive to maintain formal correctness, the focus is on the intuition that lies behind the

symbols and not on the symbols themselves. So where most economics texts for advanced

undergraduates freely use the calculus, these lectures avoid it precisely because so many find

it impenetrable and unintuitive.4 Still, math statements percolate throughout each of the

lectures. My reasons for insisting on using mathematics are two: I believe in the sentiment

expressed in this section’s epigraph. And, much of what needs to be said requires some math

notation and arguments.

Some, perhaps many, may find the notion that human behavior can be depicted using

mathematics repellent because it conflicts with the belief that humans exercise free will.

Such arguments are to be taken seriously, but a detailed discussion of them would turn what

is intended as an introduction to an area of economics into a philosophy tome. But if you

2...the more we understand the laws of the universe, the more it seems that they are based on the laws

of mathematics (my translation)
3This is particularly true for readers from the United States, where all-too-many believe that math is only

accessible to the Sheldon Coopers of the world and not to regular people. And because so many feel this

way, innumeracy is tolerated to an extent that illiteracy is not. Often it’s rooted in experiences with teachers

who, in addition to being sufferers themselves, project their own discomfort with rudimentary concepts into

feelings of inadequacy upon the part of the student. On the other hand, there are those who simply suffer

math antipathy, which is perfectly understandable.
4I also believe it promotes mechanical thinking about economics that tends to retard rather than promote

a deeper intuitive understanding.
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are so inclined, I would ask that you consider several points.

The physical reality in which we operate is described by mathematical principles to

an astonishing degree of accuracy. Many things we now understand to be true about it

were discovered as a consequence of mathematical argument. Why would inhabitants of

that reality be exempt from such description? Saying that human behavior is amenable to

mathematical representation is not the same as saying humans are mindless automatons.

Indeed, the field of mathematics known as optimization is devoted to finding the best choice

from an array of alternatives. And, more prosaically, how does one can explain humanity’s

obvious affinity for straight lines? We see them everywhere from reforested land to footpaths

between two objects despite Kent’s famous admonition that “Nature abhors a straight line”.

You need not be Hari Seldon to believe in the usefulness of mathematics in the study of

human behavior.5

Regardless of how you feel about such matters, these Lectures are about economics and

not mathematics. You should be able understand the fundamental story by skipping the

math and just reading the words. However, that’s akin to the golfer who avoids certain

clubs. It gets you through the round and may even lower your score. But you’ll still have

the weaknesses in future rounds. Another, which I use, is to skim the equations that appear

opaque on first reading, but revisit them once you have a grasp of the argument.

Because mathematical concepts and symbols are used, you need to know what they mean

when you encounter them. Therefore, we now introduce a few concepts and a list of symbols.

The intent of the latter is to provide a convenient reference for later discussion.

The most basic concept is a set, which is defined as a collection of objects. What those

objects are can vary. Familiar examples include a set of tools, a set of silverware, or a dozen

apples. Each meets the criterion of having objects in it. Perhaps more complicated, but still

familiar, examples would be the set of integers and the set of rational numbers.6 Objects in

the set are referred to interchangeably as members or elements of the set.

We denote sets by the symbol {·}. Here, and in all that follows, the symbol · is a stand-in

5William Kent was an 18th century English landscape architect. Hari Seldon is a fictional psychometrician

who is the hero of Issac Asimov’s Foundation.
6Integers are the whole numbers such as 1,2,3 and a rational number is one that can be expressed as a

ratio of two integers.
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for an argument to be filled in later. The set definitions we use in these lectures have three

parts the name of the set, a description of the kind of objects that are in the set, and a

qualifying statement about those objects. For example, the expression

O = {oranges: the oranges are edible} ,

is to be read as “O is the set of oranges such that (a colon, :, is the math symbol for the

words such that)7 the oranges are edible”. Here the name of the set is O, the kind of objects

in the set are oranges, and the qualifier is that the oranges be edible. Similarly,

RO = {oranges: the oranges are inedible}

would be be read as RO is the set of oranges that are inedible.

If all the elements of set A also belong to set B, then A is a subset of B, which we denote

by A ⊂ B. For example, if B = { all apples} and A = {golden apples} then A ⊂ B. The

intersection of sets A and B, denoted A ∩ B, consists of the set of elements that they have

in common. For example, if A = {red, white, blue} and B = {white, black, yellow} then

A ∩B = {white}. Unless assumed otherwise, the order in which elements of a set appear is

arbitrary. Therefore, A = {red, white, blue} and B = {red, blue, white} are the same set,

denoted A = B. Alternatively, A ⊂ B and B ⊂ A implies that A = B.

Associated with the notion of a set is that of the empty set, which is defined as the

set with nothing in it. You might reasonably ask why we are interested in a set that has

nothing in it? My best answer is that we often encounter situations that involve physical

or (currently) technical impossibilities. And to tell complete economic stories, we need to

account for them. The notion of an empty set lets us. The notation for the empty set is ∅,

which resembles a zero with a backslash drawn through it. The convention is that ∅ belongs

to all sets.

Common Symbols We now list, for convenient later reference, some symbols used in

these lectures. We haven’t yet told you what they all mean, but that will come later.

• {·}, set

7Many writers use |, vertical slash, in place of :.
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• ∅, the empty set

• ⊂, is a subset of, A ⊂ B reads A is a subset of B

• ∩, intersection, A ∩B is the intersection of sets A and B

• x, a single input or a vector of inputs

• w, a single input price or a vector of input prices

• y, a single output or a vector of outputs

• p, a single output price or a vector of output prices

• wx =
∑

n wnxn, the sum of all input prices times the input values

• py =
∑

m pmym, the sum of all output prices times the output values

• ∃, there exists

• :, such that

• ≥, greater than or equal to

• ≤, less than or equal to

• =, equal to or “is′′

• ≡, is defined as or is equivalent to

• (a, b), all real numbers x such that a < x < b

• [a, b], all real numbers x such that a ≤ x ≤ b

• ∆A, the change in A

• ⇒ or ⇓, implies. For example, A ⇒ B is to be read as A implies B. Alternatively

(and more completely), A⇒ B is translated as: If A is true, then B is true.

• ⇔, two statements are equivalent. For example, A⇔ B is to be read as A and B are

equivalent, or as A implies B and B implies A.
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• for vectors x and y, x ≥ y, x 6= y, every element of x is at least as large as the

corresponding element in y and one element of x is strictly larger than its corresponding

element in y. For example, (0, 0) and (0, 1) both satisfy (0, 0) ≥ (0, 0) and (0, 1) ≥ (0, 0)

but only (0, 1) ≥ (0, 0) , (0, 1) 6= (0, 0) .

• ∈, belongs to or is a member of. For example, â ∈ A is to be read as â belongs to A,

or â is a member of A

• /∈, does not belong to or is not a member of. For example, â /∈ A is to be read as â is

not a member of A.
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Producers

We study individuals who make (produce) goods or services to sell in markets. We refer to

them interchangeably as producers, decisionmakers, or firms. A handy example is a farmer

producing agricultural commodities (for example, wheat, corn, soybeans, hogs, beef, etc.).

But feel free to substitute your own examples to suit your experience and intuition. The

more that you think in familiar terms the more you will understand.

We make basic assumptions about what motivates producers and about the setting in

which they make decisions. These assumptions are maintained throughout the lec-

tures. You don’t need to agree with them or even find them believable. But the analysis

that follows assumes that they hold.

The first assumption is that producers are small or perfectly competitive relative to the

markets that they face. Small means that they take the prices at which they can buy and

sell market items as given by the market. Producers cannot manipulate prices, they are price

takers. The second assumption is that producers are self-interested individuals who seek to

maximize their profit from producing and selling commodities.

In other economics classes, you may have encountered situations where producers can

manipulate prices (for example, monopoly or monopsony). These lectures aren’t about them.

We treat a situation similar to what one faces on entering a Starbucks@ or McDonalds@.

You do not bargain with a barista over the price of a cappucino. Either you pay the stated

price or you don’t get the cappucino. Same here, a producer doesn’t negotiate the price of

an input or the selling price of the product.

The profit maximizing assumption can be controversial. Many argue that individuals are

not motivated solely by self gain. Others argue that producers should not behave selfishly.

I make no argument either for or against those positions. But these lectures are about

individuals who, when faced with a market setting, maximize profit. If producers maximize

profit, what prevents them from making it infinitely large? Our answer is what we call the

Technology, which is the subject of the rest of this Lecture.
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The Technology Set Introduced

The Technology describes the possibilities for producing outputs using inputs. Inputs, which

we denote by x, are commodities or goods used to produced something. For example, in

making a cake the inputs include its raw ingredients, your time and effort, heat from the

oven, etc. Outputs, denoted by y, are the commodities produced (for example, the cake).

We characterize the feasible possibilities as a set that contains inputs and outputs and that

is common to all producers. Producers cannot affect that set. So, it is not unlike market

prices. Producers take it as given and then react to it in making their production decisions.

You might think of this set as given by Nature.

The mathematical definition is

T = {(x, y) : x can produce y}

Here T is a notational stand-in for the Technology. The expression (x, y) tells us that the

members of the set are inputs and outputs, and the qualifying statement is that “x can

produce y”. Expressed in words: The technology is the set of inputs and outputs such that

the outputs can be produced using the inputs.1 So, saying that “x and y belong to T”,

written in symbols as (x, y) ∈ T , is the same as saying “x can produce y”. Or, in symbols,

(x, y) ∈ T ⇔ x can produce y. (Recall that ⇔ translates into words as “is equivalent to”.)

Thus, the technology contains all feasible combinations of inputs and outputs. This

way of thinking of the technology contrasts with every day usage of the word technology.

For example, you may have heard individuals speak of the technology for growing corn

or the technology for producing steel. This is sensible given most dictionary definitions of

technology. But it’s not how we use the term. Our usage of the term includes all such

notions in a common set from which any producer can choose. So, instead of saying the

technology for growing corn we use the phrasing the process for growing corn or the technical

process for growing corn.

1Having introduced and defined the term, in the following we refer to the technology using lower-case

letters.
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The Technology is a “Model”

T contains many possibilities, most of which are complex. That’s true for even simple choices.

Think of what’s involved in producing a wooden pencil. Its obvious inputs include wood,

pencil lead, an eraser, and a piece of metal or plastic to hold the eraser in place. Each of

these inputs have themselves been produced or processed. The productive process stretches

further back. It quickly becomes apparent that keeping track of all such activities becomes

complex. Faced with such complexity, we need a model. This chapter details the production

model used in these lectures. We construct it by imposing assumptions (restrictions) upon T .

We strive for a model that captures the economic essentials of production but that remains

parsimonious.

First, we must clarify how we think about x and y. We have said that they are inputs

and outputs but not how we measure them. We assume they can be represented as real

numbers. Because we are interested in cases that may involve multiple inputs and multiple

outputs we let x be a nonnegative N-dimensional vector

x = (x1, x2, ..., xN) ,

where xn stands for the nth input to the production process. Similarly, y stands for a

nonnegative M-vector

y = (y1, y2, ..., yM) ,

and ym for the mth output produced. M and N are integers and typically differ. In the

following, to avoid mathematical jargon, we often refer to x′s and y′s that are vectors as

bundles and not as vectors. The concepts are interchangeable.

Real numbers are familiar, so it’s easy to gloss over this assumption. But familiar or

not, they are abstract and a bit mysterious. They represent the completion of the rational

numbers. Or, put another way, they are the set of rational numbers augmented by the

numbers (the irrational numbers) that fall in between the rational numbers to form the

continuum. Mathematicians developed the notion of an irrational number because physical

phenomena exist that we cannot measure exactly without them. Pi that gives the ratio of a

circle’s circumference to its diameter is one example. Another is the length of the diagonal
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of a square. By Pythagoras’s Theorem the length of the diagonal for a square with 90 foot

sides is
√

2 × 90 feet. And, regardless of the units used to measure the square’s sides, the

diagonal’s length remains
√

2 times that length. That means that we cannot devise a discrete

system of measuring the lengths of diagonals and the sides. It’s as if Nature demands the

existence of an irrational number,
√

2, to measure length.

In thinking about inputs and outputs, it’s important to remember that T is defined in

terms of all possible inputs and outputs. In particular, x contains all possible inputs to a

production process and y contains all the possible outputs. To give an example, think of a

farmer who grows corn on a parcel of land. If asked to list the associated inputs, one might

respond land, labor, fertilizers and pesticides, capital equipment, and fuel. That list, in fact,

encompasses the inputs most often considered in empirical studies of farmer behavior, but

it is incomplete. Corn growth also depends upon other factors including natural moisture,

natural radiation, the presence or absence of a pest infestation, the organic content of the

soil, etc. In short, anything that affects corn growth is included in x. x even includes factors

that inhibit production, such as pests.

What’s true for x is true for y. When we write y, we mean all outputs. For the corn

grower that extends the list beyond corn to include air pollution emitted by burning fuel,

soil run-off as a result of plowing, fertilizer and pesticide leakage into the environment, noise

pollution from running capital equipment, etc. Again the list contains both desirable outputs

and nondesirables such as pollution, noise, and runoff. All belong in T .

We emphasize the higher dimensional nature of x and y because most of our discussions

are in simpler terms. For example, our graphical illustrations are two (sometimes three)

dimensional. So, when we discuss the interaction of inputs and outputs, it will be rare for us

to illustrate a production process that contains more than one or two outputs and one or two

inputs. That doesn’t mean that other dimensions are not important. Instead it manifests our

visual perception of the world as three-dimensional and reading surfaces as two-dimensional.

In drawing such pictures, we assume that all other things are held constant.2

As you read, please keep in mind that our model of T assumes a deterministic setting.

2In economics jargon, the Latin phrase ceteris paribus is often used in place of “all other things held

constant”.
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We do not treat situations where producers make decisions in the presence of uncertainty

about the outcomes of those decisions. This is unrealistic, but we are trying to build a

tractable model and not to replicate reality. And, as unrealistic as it is, it’s a common

assumption in even the most advanced economic analyses. No one believes that uncertainty

is unimportant. But treating uncertainty makes even the simplest production problems

complicated. We also assume that T satisfies a regularity condition:3 T is a closed set and

{y : (x, y) ∈ T} is bounded for all x finite. If you have a smattering of math knowledge,

you may know what this means. If you don’t, the regularity condition’s primary role is to

simplify the definition of maxima and minima in what follows.

Assumptions on T

Our restrictions on T mix five assumptions. We list them in mathematical form and then

explain each in the subsections that follow. A good way to view these assumptions is as a

menu of alternative properties T may possess. Each assumption may be reasonable in some

settings but not in others.

Assumptions on T

• 1. T 6= ∅ (T is nonempty);

• 2. (x, y) ∈ T ⇒ (x′, y) ∈ T for x′ ≥ x (Free disposability of inputs (FDI));

• 3. (x, y) ∈ T ⇒ (x, y′) ∈ T for y′ ≤ y (Free disposability of outputs (FDO));

• 4. If (x0, y0) ∈ T and (x1, y1) ∈ T then λ (x0, y0)+(1− λ) (x1, y1) ∈ T for all λ ∈ (0, 1)

(T is a convex set).

• 5. (0, y) /∈ T if y ≥ 0 and y 6= 0 (No Free Lunch (NFL)) and (0, 0) ∈ T (No Fixed

Costs (NFC)).

3In a more formal setting, the regularity condition would be listed as a separate (the sixth) assumption.

I have avoided this to maintain the focus on what I regard as the more important restrictions.
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T is nonempty

T 6= ∅, which is read as “T is not an empty set”, is easy to justify. It means that we assume

that an x and a y exist such that x can produce that y. Because we live in a world where

things are produced, it’s plausible.

Figure 1: T not empty

x

y

x0

y0

Nonemptiness of T is a good place to start illustrating our model of T . In all illustrations

that follow, we assume that you understand the traditional x− y axis representation of the

Cartesian coordinate system (coordinate plane). We refer to the x − y axis representation

interchangeably as (x, y) space and the (x, y) plane.

In Figure 1, we label the vertical axis as y and let it measure output. We use the

horizontal axis to measure input and label it x. Because there are only two dimensions, the
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figure is a stylized representations of our ideas. Various interpretations exist. It can illustrate

a hypothetical technology where one input produces a single output, how one output and

one input covary while holding all others fixed, or, in a macroeconomic spirit, the behavior

of an “aggregate input” and an “aggregate output”. Nonemptiness of T means that at least

one feasible point exists in (x, y) space. It’s illustrated by the point (x0, y0).

Free disposability of inputs (FDI)

FDI requires that if x can produce y, any input bundle that is at least as large as x in all its

N dimensions can produce that same y. This assumption strikes many as intuitive. And in

many cases it is. For example, if a farmer can produce 75 bushels of wheat with one hired

hand, it seems reasonable that the farmer could continue to produce 75 bushels of wheat

if another hired hand were added. In fact, intuition would suggest that the farmer could

produce more than 75 bushels. Intuition might also suggest that if the farmer increased the

other inputs devoted to wheat production, producing 75 bushels of wheat remains feasible.

Starting from the feasible point, (x0, y0), depicted in Figure 1, FDI requires that all points

to its right holding output at y0 are feasible. Figure 2 illustrates. Note the logical force of

the assumption. Nonemptiness of T ensures that one feasible input-output bundle exists.

Adding FDI ensures an infinity of feasible input-output combinations exist.

This intuition has its limits. To illustrate, let’s use our farmer example. Suppose that

the farmer’s inputs are land, hired labor, fertilizer, and seed and that the output is wheat.

Let’s also say that the farmer’s input usage to produce that 75 bushels is

x = (1, 1, 50, 40) ,

which stands for 1 unit of land, 1 unit of hired labor, 50 units of fertilizer, and 40 units

of seed. (You are free to choose ‘units’ to suit your intuition.) Now, what do you believe

happens if land, hired labor, and seed remain constant but fertilizer increases without bound?

In Figure 2, if the horizontal axis measured fertilizer, we illustrate that by allowing x to run

off the edge of the page and on to infinity.

FDI requires that producing 75 bushels of wheat remains feasible. But this counters real-

ity. It is well known that applying too much fertilizer is destructive rather than productive.
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Figure 2: Free disposability of input
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Production economists call this phenomenon congestion. It happens because increasing one

input while holding others constant eventually overwhelms the other inputs with which it

cooperates. Another simple example comes from holding land, fertilizer, and seed constant

at (1, 50, 40), respectively, and allowing hired labor to grow towards infinity. Sooner rather

than later, those extra workers get in one another’s way. Congestion is a general phenomenon

common to many different production processes. The aphorisms that one can “get too much

of a good thing”or that “too many cooks can spoil the broth” capture the intuitive essence

of congestion.

So, if FDI counters physical reality, why use it? The answer is that it is an acceptable

approximation in many practical instances. Think of our farmer. Because the farmer knows

the technology, the farmer will know about congestion and will not operate in regions of T

where it exists. It’s hard to imagine a producer applying destructive inputs. If they do, they

soon go out of business. Therefore, while we know congestion can occur, we may lose little

to no explanatory power in using FDI in examining producer behavior. As always, models

are “as if” devices.

Free disposability of output (FDO)

FDO requires that if x can produce y, it can also produce any output bundle, y∗, whose

elements, y∗m, m = 1, 2, ...M , are no larger than the corresponding element in y. For example,

suppose that 1 acre of land and 1 unit of hired labor can produce 40 bushels of corn and 40

bushels of soybeans. Then, FDO requires that 1 acre of land and 1 unit of hired labor can

produce 40 bushels of corn and 0 bushels of soybeans, 0 bushels of corn and 40 bushels of

soybeans, 30 bushels of corn and 30 bushels of soybeans, and so on. Producers can dispose

of (throw away) outputs without changing input use or the production of other outputs.

Figure 3 illustrates the impact of imposing FDO on the nonempty T depicted in Figure 1. If

(x0, y0) is feasible, FDO requires that all the points on the line segment connecting (x0, y0)

and (x0, 0) belong to T .

Production processes exist for which FDO is implausible. An important counterexample

is offered by processes that involve the production of undesirable outputs. For example,

farming that involves tilling land generates soil erosion. Soil erosion is undesirable because
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Figure 3: Free disposability of output
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it pollutes water resources and wastes a valuable resource, the soil. If FDO were true, farmers

could hold all inputs and crop production constant and reduce soil erosion. In fact, FDO

requires that soil erosion could be eliminated. But soil erosion occurs. Is it that farmers

have a pathological need to pollute or to waste valuable resources? No, FDO is implausible

in this setting because reducing erosion requires diverting resources from crop production. If

production processes generate undesirable outputs, the rule of thumb is that resources will

have to be diverted from the production of desirables to remediate the problem.

T is a convex set

Diminishing marginal returns is a fundamental concept in economics. Its essence is that

one receives smaller marginal returns or benefits as one works harder or consumes more. In

producer theory, its most common manifestation is diminishing marginal productivity. The

consumer analogue is diminishing marginal utility.

Assuming that T is a convex set is the way that economists ensure that T is consistent

with diminishing returns. A set is convex or satisfies convexity if any weighted average of

any two members of the set also belongs to the set. Geometrically, a set is convex if a line

segment connecting any two elements of the set lies entirely within the set (see Figure 4).

The math names for the expression

λ
(
x0, y0

)
+ (1− λ)

(
x1, y1

)
for λ ∈ (0, 1) are the convex combination of (x0, y0) and (x1, y1) or the line segment con-

necting them. Thus, another way to define a set as being convex is to require that all the

convex combinations of the elements of the set belong to the set. Familiar examples are the

set of real numbers (−∞,∞) and the (x, y) coordinate plane.

Let (x0, y0) and (x1, y1) in Figure 5 be two feasible input-output bundles. Convexity

requires that λ (x0, y0) + (1− λ) (x1, y1) ∈ T for all λ ∈ (0, 1). For example, setting λ = 1
2

gives (
x0 + x1

2
,
y0 + y1

2

)
∈ T, (1)

which is the simple average of (x0, y0) and (x1, y1) that Figure 5 illustrates as falling halfway
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Figure 4: Convex and Nonconvex Sets
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Figure 5: Convexity and T
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between them on the connecting line segment. Taking λ = 3
4

gives

3

4

(
x0, y0

)
+

1

4

(
x1, y1

)
∈ T (2)

that corresponds to the point falling midway between
(

x0+x1

2
, y

0+y1

2

)
and (x0, y0) on that

line segment. Repeating this argument for all λ ∈ (0, 1) shows that all the points on the line

segment connecting (x0, y0) ∈ T and (x1, y1) ∈ T must belong to T .

Invoking convexity exposes some mental puzzles associated with working with real num-

bers. For example, it’s sensible to think of automobile as the output of a production process.

But how does one interpret
1 + 2

2
= 1.5

automobiles? Is 1
2

of an automobile meaningful, other than as junk? We don’t provide an

answer. They exist, and you are encouraged to seek them out. What’s important is that

you realize such questions exist.

No free lunch (NFL) and No fixed costs (NFC)

NFL requires that an input bundle with all inputs equal to 0 cannot produce an output

bundle that contains any positive elements, that is one with at least one ym > 0. Producing

an output requires using some inputs. NFL is hard to contradict. In essence, it repeats the

Law of Conservation of Mass : matter can be neither created nor destroyed. In thinking

about NFL, it helps to remember that when we say that “we make a product”, we do not

mean that we “create” it. Instead, we mean that we transform an existing mass of matter

in the form of inputs into other forms. NFL ensures that a point such as (0, y0) in Figure

6 cannot be feasible. NFC, which is also referred to as Inaction is possible, permits the

producer to choose to do nothing. Combining NFL and NFC ensures that points on the

vertical axis above the origin cannot be feasible, while the origin remains in T .

The Canonical Technology

We say that T is a canonical technology if it satisfies all five assumptions. We use a distinct

term for such a technology to emphasize that production processes exist that do not satisfy all
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Figure 6: Violation of No Free Lunch
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five assumptions. Calling it canonical signals that it’s a standard or familiar representation.

Our visual illustration of its construction highlights a key point: one can use observed

data on inputs and outputs to build a set, call it T̂ , that satisfies all five assumptions. That

has important implications. First, because such a T̂ always exists, we cannot use observed

data to falsify the five assumptions. That does not mean that they are correct or that we

can verify them. Rather, we cannot rule them out using real-world data. Second, observed

data can be used to construct a ‘canonical technology’. Our model is not just a conceptual

toy, it has empirical content and can be used to study observed phenomena.

To demonstrate the construction, we assume that we are given two data points (x0, y0)

and (x1, y1) as illustrated in Figure 5. (Thus, nonemptiness is satisfied.) Invoking convexity

incorporates all points on the solid line segment connecting these two points into the tech-

nology. Imposing FDO on each point on this line segment (including its endpoints) ensures

that all points lying below it and on or above the horizontal axis belong to T . Applying

FDI to the result includes all points lying below a horizontal line emanating from (x1, y1)

(towards the right) and on or above the horizontal axis. Adding assumption 5 includes (0, 0).

Convexity includes the line segment connecting (0, 0) and (x0, y0). FDO includes the area

below that line segment. The result, as built up from (x0, y0) and (x1, y1), is illustrated

by Figure 7. (In Exercise 2, you are asked to revisit this construction using an alternative

approach to developing T.)

Figure 7 was constructed using only two data points and our assumptions. That accounts

for its polygonal appearance.4 You should not infer, however, that the canonical technology

must be polygonal. Figure 7 ensures that we do not rule that out, but other forms are

allowed. For example, Figure 8 illustrates T as the area below the smooth curve emanating

from the origin labelled OY, which includes the points (x0, y0) and (x1, y1). You can verify

that the technology illustrated in Figure 8 satisfies our five assumptions. Observing (x0, y0)

and (x1, y1) is consistent with both the technology illustrated in Figure 7 and the technology

in Figure 8. But the technology in Figure 8 includes points not included in the technology

illustrated in Figure 7. One interpretation of the technology in Figure 7 is as a conservative

4A polygon is a figure in the coordinate plane with a finite number of sides. Special cases are triangles,

rectangles, and squares.
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Figure 7: The Canonical Technology
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approximation to a technology consistent with the technology illustrated in Figure 8 (and

possibly others) that has been constructed using observed (x0, y0) and (x1, y1) and our five

assumptions.

Figure 8: A smooth canonical technology
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Figure 9: Exercise 1

T
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Exercises

1. Figure 9 depicts a technology. Explain which of the properties it satisfies.

2. Assume that you are given two data points (x0, y0) and (x1, y1) as illustrated in Figure

5. Construct T by invoking in succession free disposability of inputs, convexity, free dispos-

ability of outputs, and no free lunch and no fixed costs. Compare and contrast your result

with Figure 7.
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Lecture Introduction

So far, we have discussed the technology as a set of inputs and outputs. Many readers,

however, will have encountered the technology represented as a production function. Some

may have also encountered an input requirement function. This lecture shows how to derive

these functions from T and how our basic assumptions on T affect their properties.

Figure 1 depicts a single-input, single-output, canonical technology, T , as everything

on or below the curve OY.1 Such a technology is unrealistic. The same is true for single-

Figure 1: Canonical Technology
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Y

input, single-output production processes. We study them because they provide the core

1Figure 1 is derived from Figure 8 in Lecture 2.
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economic intuition on producer behavior and a nice format for showing how the notion of

the technology is incorporated into economic analyses.

We first study the production function for a single-output, single-input production pro-

cess, visualized as the curve 0Y in Figure 1. Then we study the input requirement func-

tion, visualized as 0X in Figure 2. We conclude the lecture by looking at the (slightly)

more general cases of a multiple-input, single-output production process and a single-input,

multiple-output production process.

But first, a few words on viewing phenomena from different perspectives.

A Parable on Perspective

When three blind men were confronted with, to them, an unknown beast called

an elephant, they decided to identify its nature by examining it by touch. The

first, who touched its side, declared it to be a wall. The second, who touched

its ear, declared it to be a fan. And the third, who felt its tail, proclaimed it a

snake. (Source: Apochryphal)

The moral is that examining things from different perspectives conveys different infor-

mation. Think, for example, what you do when handed an unfamiliar object. Do you

turn it over to look at it from all sides? We can draw insight from doing the same thing,

metaphorically speaking, with our model of T .

By convention, ordered pairs graphed in the real plane measure the independent variable

along the horizontal axis (labelled x in Figure 1) and the dependent variable along the vertical

axis (labelled y in Figure 1).2 This captures the notion that the independent variable drives

or determines the dependent variable. So, following this convention, Figure 1 suggests that

choosing x fixes the range of possible outputs that can be produced. Our definition,

T = {(x, y ): x can produce y} ,

written in the active voice with x as the subject, reinforces that intuition. But it can be useful

2We should say the convention outside of economics because economists violate this rule when they graph

demand and supply curves.

Copyright © 2024 Robert G. Chambers



to view technologies treating y as the independent variable and x as the dependent variable.

This involves switching axes in depicting T . Figure 2 illustrates with T now represented as

everything on or above the curve 0X. This changes the visual perspective on T , but not the

Figure 2: Canonical T in input dependent form
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substance of T . We rephrase the definition of T in the passive voice as,

T = {(x, y ): y can be produced by x} ,

Examining T from different perspectives is a recurring theme in these lectures. In this

lecture, its manifestations are the production function and the input-requirement function.

Later lectures extend these concepts to encompass more general technologies and decision

settings.
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Production Function (Single-input, single-output Case)

Definition 1 (The Production Function). The production function for input level x, f (x),

is the maximum output that can be produced using x.

The mathematical version is

f (x) ≡ max {y : (x, y) ∈ T} .

(Recall that ≡ translates as is defined.) Here and elsewhere, we interpet max {·} as an in-

struction to choose the maximum (largest) element contained in the set {·}. In this instance,

that set is all the output levels that can be produced using x, that is

{y : (x, y) ∈ T} = {y : x can produce y} .

One locates f (x) in Figure 1 by choosing x on the horizontal axis and then locating the

largest (highest) y in T that x can produce. Doing this for all x in Figure 1 gives the curve

0Y as the graph of input-output pairs, (x, f (x)), falling on the production function for T .

For the single-input, single-output technology, you can think of the graph of the production

function as the upper boundary for T .

To appreciate an economist’s interest in f (x), consider the simple economic problem

involving a producer who is endowed with a fixed amount of x (assumed nonconsummable).

How would the producer use that x? One plausible alternative is to convert it into as much

y as possible via T . f (x) achieves that.

We now investigate how the basic assumptions on T affect f (x) .

T is not empty T 6= ∅ means that at least one (x, y) is feasible. Thus, at least one x exists

for which f (x) is well-defined. Here’s the reasoning. If T is not empty, take any (x, y) ∈ T .

If that y is the only output that x can produce, then y = f (x). If other output levels can

be produced using x, the largest of them is f (x). Thus, f (x) must exist for at least one x

if T 6= ∅, as desired.

T not empty, however, does not imply that f (x) is well defined for all x. The reasoning

here is that T 6= ∅ is satisfied even if only one feasible input-output bundle exists. (Imagine
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a T that has a single point in it.) The production function is well-defined for that x, but

what about other values of x?3

We state the conclusion in math terms as:

• T 6= ∅ ⇒ ∃ x such that f (x) is well defined.

In words, T not equal to the empty set implies that there exists an x for which f (x) is well

defined.4

Free disposability of inputs If FDI holds, then (x, y) ∈ T ⇒ (x′, y) ∈ T for x′ ≥ x, or,

in words, increasing x does not result in a lower y. To determine its consequences, first find

the production function for x, f (x). By the definition of f (x), x must be able to produce

f (x) so that (x, f (x)) ∈ T . Now substitute f (x) for y in the statement of FDI to get

(x, f (x)) ∈ T ⇒ (x′, f (x)) ∈ T

for x′ ≥ x. Because f (x) can be produced using x′, it cannot be true that the maximum

output for x′ can be less than f (x). It must be that f (x′) ≥ f (x). We conclude that FDI

implies that the production function is nondecreasing in the input,

• FDI ⇒ f (x′) ≥ f (x) for x′ ≥ x (nondecreasing in x).

The intuitive idea is that increasing input use causes maximum output, f (x), to increase.

So, the graph of f (x) has positive slope as x changes. 0Y in Figure 1 illustrates. While

correct, that intuition is not precise. Under FDI, an increasing f (x) is possible but not

required. What FDI requires is that f (x) not fall as input rises, or that the graph of f (x)

not have a negative slope.

3There are mathematical conventions (‘tricks’) that we can use to circumvent this problem. For example,

one such trickis to set f (x) to a tiny nonnegative number. That solves the mathematical problem, but that

makes for problematic intuition. For example, if we set f (x) = 0 in such instances, that implies that the

physical input disappears, leaving the unhappy suggestion that T violates the Law of the Conservation of

Mass.
4Math Note: Here we implicitly invoke the regularity condition imposed on T to ensure the existence of

a well-defined maximum.
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Remark 1. Understanding the difference between the intuitive meaning of a statement and

its precise meaning is important. But my belief is that your primary focus should be on

the intuition. If you have done that, you can refine that intuition to be more precise. The

terminology “increasing” and “nondecreasing” in an input offers a good example. The first

means that as the input increases output goes up. The second means that it does not go down.

Going up is a special case of not going down, as is staying constant. But the “intuition” here

is that output increases.

Free disposability of output Under FDO,

(x, y) ∈ T ⇒ (x, y′) ∈ T

for y ≥ y′. For any (x, y) ∈ T , the definition of f (x) ensures that f (x) ≥ y . On the other

hand, (x, f (x)) must belong to T . Applying FDO requires that x can also produce any y

less than or equal to f (x), so that f (x) ≥ y implies that (x, y) ∈ T .

Thus, if FDO applies, knowing f (x) lets one construct T . But if one knows T , one can

construct f (x) for single-output technologies. We, therefore, conclude that under FDO f (x)

and T convey the same information. That is,

• FDO ⇒ (x, y) ∈ T ⇔ f (x) ≥ y,

which translates as: the statements that (x, y) ∈ T and that f (x) ≥ y are equivalent. The

production function, f (x), is a function representation of T .5

T is a convex set Convexity requires that weighted averages of two feasible points must

be feasible. In mathematical form,

(xo, yo) ∈ T and (x′, y′) ∈ T ⇒ λ (xo, yo) + (1− λ) (x′, y′) ∈ T

for λ ∈ (0, 1) .

5Many, if not most, elementary texts define the “technology” by the production function without invoking

or recognizing FDO. For simple enough cases, that gives a workable model. But the approach becomes more

problematic as more general production processes are considered.
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To investigate the consequences for f (x), choose yo = f (xo) and y′ = f (x′). Both

(xo, f (xo)) and (x′, f (x′)) fall on the graph of f (x), the curve 0Y in Figure 1. Imposing

onvexity ensures that all weighted averages of (xo, f (xo)) and (x′, f (x′)) belong to T . These

weighted averages are illustrated in Figure 3 as the points on the line segment connecting

(xo, f (xo)) and (x′, f (x′)). Pick any λ ∈ (0, 1) and define

Figure 3: Convexity and the production function
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x̂ = λxo + (1− λ)x′,

which we illustrate in Figure 3 as falling between xo and x′. We seek

f (x̂) = f (λxo + (1− λ)x′) .
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Convexity implies that (x̂, ŷ) ∈ T , where

ŷ = λf (xo) + (1− λ) f (x′) .

(See Figure 3.) It must be true, therefore, that the largest output that x̂ can produce, f (x̂),

cannot be smaller than ŷ. Therefore,

f (λxo + (1− λ)x′) = f (x̂)

≥ ŷ

= λf (xo) + (1− λ) f (x′)

In Figure 3, either ŷ = f (x̂) or (x̂, f (x̂)) lies above (x̂, ŷ). If it’s the latter, the graph of f (x)

passes above the line segment connecting (xo, f (xo)) and (x′, f (x′)). Because our choice of

λ was arbitrary, the same argument applies for all λ ∈ (0, 1). That yields the conclusion:

• Convexity⇒ f (λxo + (1− λ)x′) ≥ λf (xo) + (1− λ) f (x′) for λ ∈ (0, 1) .

f (x) is a concave function of x.6 The curve 0Y in Figure 1 depicts the graph of an

increasing and concave function of x. The positive slope comes from FDI, and the behavior

of the slope as x varies is a consequence of convexity. In Figure 1, the slope of 0Y gets

flatter as x increases. This is a characteristic of concave functions.7 Thus, together FDI and

convexity (speaking loosely) require that the production function increases at a decreasing

rate as x increases and manifests the law of diminishing returns. We defer a more complete

discussion of diminishing returns until after we discuss the consequences of NFL and NFC

for f (x).

No Free Lunch and NFC NFL requires that (0, y) /∈ T if y ≥ 0 and y 6= 0. For the single

output case, we rewrite that as (0, y) /∈ T if y > 0. A positive output cannot be produced

using zero input. f (0) cannot be greater than zero. Adding NFC requires that (0, 0) ∈ T

leading to the conclusion that f (0) = 0. Thus,

• NFL and NFC ⇒ f (0) = 0

NFL and NFC imply that the graph of the production function emanates from the origin,

again as illustrated in Figure 1 by the curve 0Y .

6A function h (z) is defined to be concave in z if h (λzo + (1− λ) z′) ≥ λh (zo)+(1− λ)h (z′) for λ ∈ (0, 1) .
7More precisely, a concave function’s slope does not increase as x increases.
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Average Products, Marginal Products, and the Law of

Diminishing Returns

We use the production function to define and investigate the concepts of average product

and marginal product.

Definition 2 (Average Product). The average product at input level x̂ is the ratio of f (x̂)

to x̂

In equation form,

AP (x̂) ≡ f (x̂)

x̂
,

where AP stands for average product. Because f (x) changes as x varies, the average product

is a function of x. In Figure 4, AP (x0) is the vertical distance 0f (x0) divided by the

horizontal distance 0x0, which equals the slope of the dotted line segment connecting the

origin, 0, and (x0, f (x0)).

In Figure 4, AP (x0) > AP (x1). The average product falls as x increases. You can

experiment with modifications of Figure 4 to convince yourself that this is true for the

canonical technology. Economists call this phenomenon a diminishing average product or

diminishing average returns. It is a consequence of imposing convexity on T , and it implies

that f (x) grows, in percentage terms, at a slower rate than x

Definition 3 (Arc Marginal Product). The arc marginal product is the ratio of the change

in the value of f (x) to the change in x as x varies.

A standard way to write this definition is

MP (x) ≡ ∆f (x)

∆x

where MP stands for marginal product and capital Greek delta (∆) denotes change. Starting

at (x0, f (x0)) and moving to (x1, f (x1)), we calculate that ratio in Figure 4 as

∆f (x)

∆x
=
f (x1)− f (x0)

x1 − x0
,

which is given by the slope of the line segment connecting (x0, f (x0)) and (x1, f (x1)) (not

drawn) in Figure 4.
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Figure 4: Average Product
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On the meaning of ‘marginal’

The adjective marginal recurs repeatedly in economic discussions. Its use in the English

literature was popularized by Alfred Marshall, who attributed it to a German term used by

Johann Heinrich von Thünen. he Oxford English Dictionary offers the following definition

(among others):

Of or relating to the extra cost, revenue, or utility involved in or deriving from

the production or consumption of one additional unit of a product.

We paraphrase this to suit our discussion as

Of or relating to the extra production deriving from the use of one additional

unit of a input.

Note that the statement “one additional unit” leaves unpecified the units in which x and y

are measured. Think of our agricultural illustrations and let y stand for corn and x for land.

Is corn measured in bushels or metric tonnes? Do we measure land in acres, hectares, square

miles, or square kilometers? Units matter. Change the units and the measures change. The

overwhelming tendency in economics is to interpret ‘marginal’ changes as involving ‘tiny’

units so that x1 − x0 is practically zero (infinitesimally small).

Speaking in ‘tiny-units’ terms, the marginal product often has a simple geometric in-

tepretation.

Definition 4 (Marginal Product). The marginal product at x0 is the slope of the line

segment tangent to the graph of f (x) at (x0, f (x0)). 8

Figure 5 illustrates for x0 and x1. The respective marginal products are given by the slope

of the tangent line segments MP (x0) and MP (x1). Observe in Figure 5 that MP (x0) >

MP (x1), the slope of f (x) decreases as x increases. Thus, f (x) exhibits a diminishing

marginal product in x.

A diminishing marginal product means that x becomes less effective at promoting extra

output growth as its use grows. Hence, successively applying the same dose of x brings

8For you calculus cowboys, we take lim
(
x1 − x0

)
−→ 0.
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Figure 5: Marginal Product
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forth less output with each dose, a phenomenon that economists have observed as eventually

occurring for many production processes.9

The production functions depicted in Figures 4 and 5 exhibiting both a diminishing

average product and a diminishing marginal product is a consequence of imposing convexity

on T . Figure 6 illustrates another consequence of convexity. There AP (x0) and MP (x0)

are depicted together, and it is apparent that

AP
(
x0
)
≥MP

(
x0
)
.

Experimenting with Figure 6 confirms that this inequality holds for all x for a canonical

technology.

Defining the marginal product as the slope of the line segment tangent to the graph of the

production function is problematic if its graph is “kinked”. Figure 7 in Lecture 2 illustrates.

At either (x0, y0) or (x1, y1) the graph of f (x) for the illustrated T has multiple (literally an

infinity) tangent line segments. The multiple tangencies manifest the difference, for example,

between the arc marginal products calculated at (x1, y1) for increases and decreases in x.

For increases, the arc marginal product is zero, but for decreases it’s the slope of the line

segment connecting (x0, y0) and (x1, y1).10

You may have encountered production functions that look different than f (x) in Figure

1. Many discussions depict the production function as resembling the curve labelled 0Y in

Figure 7, which violates convexity. Under FDO, T includes all points falling on or below

0Y. Connect a point such as A and the origin with a straight line segment (not drawn).

If T were convex, points on the line segment should fall in T . But they don’t. Hence,

this technology is not convex. You will also note that for the technology in Figure 7 both

AP (x) and MP (x) first increase and then decrease. (You are asked to verify this visually

in Exercise 1.) Production processes like the ones in Figure 7 are said to exhibit variable

returns to distinguish them from convex ones. Such production processes can and do exist,

but they are not a focus of these lectures. We explain why in Lecture 9.

9von Thünen was among the first to document it empirically, and he did it in the early 19th century using

German farming data.
10In analytic terms, at

(
x1, y1

)
the left-hand derivative of f (x) differ, so that the function is not differen-

tiable.
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Figure 6: Average Product and Marginal Product
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Figure 7: Variable Returns Production
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Input-requirement Function (Single-Input, Single-Output

Case)

Definition 5. [Input-requirement Function] The input-requirement function for output level

y is the smallest input that can produce y.

The mathematical definition is:

e (y) ≡ min {x : x can produce y} .

Here and elsewhere, the expression min {·} is an instruction to choose the smallest (minimal)

element in the set {·}. If T satisifies FDO, Definition ?? is equivalent to

e (y) ≡ min {x : f (x) ≤ y} .

Here we use the fact FDO ensures that f (x) is a function representation of T .

We locate e (y) in Figure 2 by choosing y and then locating the smallest (lowest) x in T

that can produce y. This gives the curve 0X as the graph of the input-output pairs (e (y) , y)

that lie on the input-requirement function for T .11

A thought experiment reveals why an economist might be interested in e (y). Consider a

self-interested producer, facing a single-input, single-output technology, who is contractually

obligated to deliver a fixed amount of y. How much x would that producer use in producing

that output?

We now develop the consequences of our basic assumptions for e (y).

T is not empty We have:

• T 6= ∅ ⇒ ∃ y : e (y) is well defined.

In words, T not equal to the empty set implies that there exists a y such that its input-

requirement function, e (y), is well-defined. We demonstrate using arguments that parallel

11Because Figure 2 depicts output, y, on the horizontal axis and x on the vertical axis, it is more conven-

tional to refer to the points on the graph of the input-requirement function as output-input pairs and write

them as (y, e (y)) in place of (e (y) , y). In an attempt to avoid confusion, we adhere here to the convention

maintained elsewhere in these lectures of listing inputs first and outputs second.
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our earlier demonstration that T 6= ∅ implies the existence of at least one well-defined

production function. Recall that if T is not empty, at least one feasible input-output pair,

(x, y), must exist. If that x is the smallest that can produce y, then x = e (y). If it’s not,

e (y) will be smallest that can produce that y. That shows that one y exists for which e (y)

is well-defined. But just as T 6= ∅ did not imply the existence of a production function for

all x, T 6= ∅ does not imply the existence of an input-requirement function for all y. And,

again, the reason is that T 6= ∅ is satisfied if only one feasible input-output pair exists.

Free disposability of input The consequence of imposing FDI for e (y) is that

• FDI ⇒ x ≥ e (y)⇔ (x, y) ∈ T,

which reads as FDI implies that x ≥ e (y) and (x, y) ∈ T are equivalent statements. Thus,

FDI ensures that e (y) is a function representation of T so that knowing it is equivalent to

knowing T . In Figure 2, this consequence validates the interpretation of T as all points lying

on or above 0X. To verify, choose (x, y) ∈ T . Then, by the definition of e (y), x ≥ e (y). On

the other hand, because (e (y) , y) ∈ T , FDI requires x ≥ e (y)⇒ (x, y) ∈ T .

Free disposability of output FDO implies that e (y) is a nondecreasing function of y,

or

• FDO ⇒ e (y) ≥ e (y′) for y ≥ y′

To verify this claim, find e (y) for y. Then because FDO requires that

(x, y) ∈ T ⇒ (x, y′) ∈ T

for y ≥ y′ substituting e (y) for x gives

(e (y) , y) ∈ T ⇒ (e (y) , y′) ∈ T

for y ≥ y′. Because e (y) can produce y′, the smallest x that can produce y′ cannot be larger

than e (y) which establishes the desired property. Figure 2 captures this consequence by

depicting the graph of e (y) (the curve 0X) with a positive slope. Strictly speaking, that

graphical depiction means that e (y) is increasing in y, which is permitted but not required

by FDO. What FDO rules out is the graph of e (y) having a negative slope.
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Convexity The slope of OX in Figure 2 increases as y increases. The positive slope is a

consequence of FDO. The increasing positive slope is a characteristic of a convex function12

and is a consequence of imposing convexity on T . In mathematical terms,

• Convexity⇒ e (λyo + (1− λ) y′) ≤ λe (yo) + (1− λ) e (y′)

for λ ∈ (0, 1). Convexity of T thus implies that e (y) is a convex function of y. The

demonstration parallels our earlier demonstration that imposing convexity on T implies that

f (x) is concave in x. (As such, we leave it to you to carry out the visual illustration of the

arguments in Exercise 2.)

Pick yo and y′ and find e(yo) and e (y′) . We seek e (λyo + (1− λ) y′) for λ ∈ (0, 1). If T

is convex,

(e (yo) , yo) ∈ T and (e(y′), y′) ∈ T ⇒ (λe (yo) + (1− λ) e (y′) , λyo + (1− λ) y′) ∈ T

for λ ∈ (0, 1) . Thus, because λyo+(1− λ) y′ can be produced using λe (yo)+(1− λ) e (y′), the

smallest input that can produce λyo+(1− λ) y′ cannot be greater than λe (yo)+(1− λ) e (y′),

so that

e (yo) + (1− λ) e (y′) ≥ e (λyo + (1− λ) y′) ,

as required.

A cautionary remark is merited. We use the same adjective convex to describe two differ-

ent mathematical objects. One is a convex set. The other is a convex function. The concepts

are related, and both involve taking weighted averages. But they still describe different

mathematical objects that correspond to different, albeit related, economic concepts.

The economic implication of convexity is that increasing output by the same amount

requires increasingly larger doses of x. This is, so to speak, the ‘flip side’ of a diminishing

marginal product and is a precursor to the notion of increasing marginal cost developed in

Lecture 6.

No Free Lunch and No Fixed Cost For the single output case, NFL requires that

(0, y) /∈ T if y > 0. That requires that e (y) 6= 0 for y > 0. The minimal input required to

12A function h (z) is defined to be convex in z if h (λzo + (1− λ) z′) ≤ λh (zo)+(1− λ)h (z′) for λ ∈ (0, 1) .

Another way of saying this, which you can verify yourself, is that h (z) is convex if −f (z) is concave.
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produce a positive output cannot be zero. NFC, on the other hand, requires that (0, 0) ∈

T allowing us to conclude that e (0) = 0. This is illustrated by the graph of the input-

requirement function, 0X, emanating from the origin in Figure 2 and never intersecting the

horizontal axis for y > 0.

Multiple-input, Multiple-output Technologies

The production function is a well-defined concept for single-output, multiple-input technolo-

gies. On the other hand, in a multiple-input setting, the input-requirement function becomes

definitionally suspect. When there are multiple-inputs, x1, x2, ..., xN , one can always define

an input-requirement function for one of the N inputs as the minimum amount of that input

required to produce a fixed output bundle given that the other N-1 inputs are held constant.

But the selection of the input to be minimized is arbitrary, so that it follows that N distinct

input-requirement functions can be defined. Similarly, while an input-requirement function is

well-defined in the single-input, the multiple-output setting, the production function concept

becomes suspect because M distinct production functions can be defined.

Treating either the single-output, multiple-input production function or the single-input,

multiple-output production function requires adjusting terminology and our graphical illus-

trations. Figure 8 depicts a single-output, two-input technology using the manifold 0AB0

emanating from the origin. In that setting, we interpret curves such as 0Y in Figure 1 as

depicting how f (x) varies with a single input while holding the other input constant. In

the three-dimensional case, that entails, for example, projecting the graph of f (x1, x2) from

(x1, x2, y) space parallel to the x2 axis onto the (x1, y) plane. If we fix x2 at, say x̂2, then

Figure 1 (and others) are then interpreted as the graph on the (x1, y) plane of (x1, f (x1, x̂2)).

(See Figure 8.)

Related questions are. Which average product? Which marginal product? Is the average

(marginal) product for x1 or x2? The relevant notions now refer to a productivity of an input

that allows one input to vary while holding all others constant. For example, the average

productivity of x1, with x2 held constant at x̂2 is

f (x1, x̂2)

x1
.
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Figure 8: Production Function with Two Inputs
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The marginal productivity of x1 with x2 held constant at x̂2 is

∆f (x1, x̂2)

∆x1
.

The graphical descriptions of these productivities are as before except that the graph of

(x1, f (x1, x̂2)) or its appropriate generalization when there are more than two inputs, which

is now called the productivity response contour for x1 with x2 = x̂2, or a productivity con-

tour, replaces the graph of the single-output, single-input production function. Parallel ad-

justments are needed to accommodate the single-input, multiple-output, input-requirement

function.
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Exercises

1. Demonstrate visually that the technology depicted in Figure 7 exhibits initially increasing

and then decreasing average products and marginal products. What characterizes the input

level where AP(x) reaches its maximum.

2. Develop a graphical illustration of the consequences of convexity of T for an input-

requirement function.

3.* By Definition 1, the graph of the production function, f (x), in (x, y) for the technology

illustrated in Figure 1 is the curve labelled 0Y. That T is convex and the resulting production

function is concave. That is,

f (λxo + (1− λ)x′) ≥ λf (xo) + (1− λ) f (x′)

for λ ∈ (0, 1) . This algebraic notion of concavity can be linked more intuitively to the

geometric notion of a convex set using the hypograph of the function, f (x). The hypograph

of the function consists of the (x, y) falling on or below the graph of f (x), that is,

hypograph of f = {(x, y) : f (x) ≥ y} .

In Figure 1, the hypograph consists of the points on or below the curve 0Y.

The notion of the hypograph can be used to frame a geometric definition of a concave

function that connects it to set convexity. Namely, f (x) is concave if and only if its hypograph

is a convex set. Show that if

f (λxo + (1− λ)x′) ≥ λf (xo) + (1− λ) f (x′)

for λ ∈ (0, 1) , then hypograph of f is a convex set.

4.* A function, e (y) is convex if and only if its epigraph is a convex set, where

epigraph of e = {(y, x) : e (y) ≤ x} ,

consists of all the points on or above the graph of e (y) . Show that if epigraph of e (y) is a

convex set then,

e (λyo + (1− λ) y′) ≤ λe (yo) + (1− λ) e (y′)

for λ ∈ (0, 1) .
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Lecture Introduction

Lecture 3 treats a single-input, single-output technology that provides an unrealistic, but

simple, setting for examining production relationships. The emphasis, respectively, is on

how input availability drives output produced and how output needs drive input use. That

analysis yields the concepts of a production function, an input-requirement function, an

average product, and a marginal product. Each is basic to the way economists think about

production relations.

Because it is unrealistic, it is natural to generalize. The last section of Lecture 3 briefly

discussed two generalizations: a single-output, multiple-input technology and a multiple-

output, single-input technology. Figure 1 depicts the graph in (x1, x2, y) space of a production

function for a canonical single-output, two-input technology as the manifold 0AB0. Figure 2

depicts the graph of the input-requirement function for a canonical single-input, two-output

input-requirement function by the manifold 0CD0. It is understood that all points falling

below 0AB0 and above 0CD0 belong to the respective T .

We make no claims for realism for either of these technologies. Indeed, both are best

viewed as simple models that illustrate different aspects of production technologies. For

example, in Figure 1 the surface 0B depicts the graph in (x1, x2, y) space of the productivity

contour for x1 (holding x2 = 0). The surface 0A plays a similar role in (x1, x2, y) space for

the productivity contour for x2 (holding x1 = 0). More generally, any point on the manifold

0AB0, say (x̂1, x̂2, ŷ), will fall on two productivity contours: one for x1 (holding x2 = x̂2)

and one for x2 (holding x1 = x̂1). Marginal productivities and average productivities are

available for all such points using the methods in Lecture 3. Figure 2 lets us examine the

interplay between the single input and the two outputs.

What Figure 1 and Figure 2 also capture, but that we have not yet discussed, is the

interplay between inputs (the surface AB in Figure 1) and the interplay between outputs

(the surface CD in Figure 2). This lecture studies these interactions. As before, we typically

illustrate our ideas using the real plane. But, unlike Lecture 3, the analysis is for technologies

with multiple inputs and multiple outputs.
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Figure 1: Two-input production function
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Figure 2: Two-output input-requirement function
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Input Sets

Definition 1. The input set, X (y), for y is the set of inputs that can produce the output

vector y.

We write X (y)’s definition mathematically as

X (y) ≡ {x : x can produce y} ,

or

X (y) ≡ {x : (x, y) ∈ T} .

We emphasize two aspects of X (y). First, it is defined for a given output bundle, y. There-

fore, y plays the role of an independent variable. Once it is fixed, it determines the dependent

variables, the inputs. Apart from the presence of multiple inputs, it looks similar to the

input-requirement function.1 If y changes, X (y) is expected to change. For the single-input,

multiple-output case under FDI

X (y) = {x : x ≥ e (y)} ,

so that e (y) forms the lower boundary for X (y). Second, the following equivalence relations

hold

x ∈ X (y)⇔ (x, y) ∈ T ⇔ x can produce y.

These equivalence relations are key to determining the implications of the five basic assump-

tions for input sets. Our discussion provides a new visual perspective on what the assump-

tions mean. But the basic argument just invokes the equivalence relation x ∈ X (y) ⇔

(x, y) ∈ T to recast concepts defined in terms of T in terms of X (y).

T not empty T 6= ∅ means that at least one feasible (x, y) bundle exists. Because that

x can produce that y, X (y) for that y is not empty. That establishes that one nonempty

X (y) exists. Hence,

• T 6= ∅ ⇒ ∃ y : X (y) 6= ∅.
1For those interested in more formality, X (y) is what mathematicians refer to as a correspondence, or

sometimes as a set-valued function.
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In words, T not equal to the empty set means a y exists for which X (y) is not the empty

set. It does not mean, however, that X (y) 6= ∅ for all possible y.

On the meaning of ≥ and ≤

This lecture focuses on comparisons of points in the coordinate plane. However, instead of

following the usual convention of labelling the horizontal axis x and the vertical axis y, we

will be labeling the horizontal axis as x1 and the vertical axis x2 in one instance and as y1

and y2, respectively, in another. That’s because the focus is upon comparing, respectively,

input and output bundles.

In making such comparisons, we need to be careful about how we interpret the math symbols

≥ and ≤. When we compare two real numbers, a and b, the meaning is clear. Then a ≥ b

means that a is not smaller than b. Similarly, a ≤ b means that a is not larger b. Our

ability to make such comparisons changes, however, when we move to bundles (vectors)

of inputs or outputs. To take an example, suppose that xA = (4 rakes, 2 shovels) and

xB = (2 rakes, 4 shovels). Can one meaningfully say that either xA ≥ xB or that xB ≥ xA?

The answer is no, because A has more rakes than B but less shovels.

So, all points in the coordinate plane (or its higher-dimensional generalizations) cannot be

ranked (ordered) relative to one another using either ≥ or ≤. ≥ and ≤ are examples of

partial orderings of the coordinate plane. It’s not important that you remember this “math”

term because we won’t use it again. But is important to remember that our ability to

compare points in the coordinate plane using ≥ and ≤ is limited. That, in turn, means that

properties of T that hinge upon ≥ or ≤ only convey information about T in limited regions

of the coordinate plane.

Free disposability of inputs FDI requires that

(x, y) ∈ T ⇒ (x′, y) ∈ T

for x′ ≥ x. Using the equivalence relation (x, y) ∈ T ⇔ x ∈ X (y), we rewrite this as:

• FDI ⇒ x ∈ X (y)⇒ x′ ∈ X (y) for x′ ≥ x.
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FDI requires that if x is in the input set for y, then any x′ greater than or equal to x belongs

to the input set for y.

We illustrate using Figure 3. Assume that the bundle illustrated by the point x belongs

to X (y) . FDI then requires that any x′ at least as large as x, depicted visually by any point

to the northeast of x, also belongs to X (y).

Figure 3: FDI and X(y)
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Convexity Convexity means that T , when viewed as a set in (x, y) space, is convex. (In

geometric terms, any two points that belong to T can be connected by a straight line segment

that lies entirely within T .) When we consider input sets, we work in input, x, space with

output, y, playing the role of an independent variate. In our discussion of convexity and
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X (y), we simplify by holding y constant. Keeping y fixed, the original definition of convexity

becomes

(xo, y) ∈ T and (x′, y) ∈ T ⇒ (λxo + (1− λ)x′, y) ∈ T

for λ ∈ (0, 1). (Note that λy + (1− λ) y = y.) Applying the equivalence relation (x, y) ∈

T ⇔ x ∈ X (y) gives:

• Convexity ⇒ xo ∈ X (y) and x′ ∈ X (y)⇒ λxo + (1− λ)x′ ∈ X (y) for λ ∈ (0, 1).

We translate this into words as convexity implies that if xo and x′ belong to the input set

for y, X (y), then any weighted average of xo and x′ also belongs to X (y). More simply,

convexity implies that X (y) is a convex set. This holds for all y.2

Figure 4 illustrates the consequences of imposing FDI and convexity on X (y). We build

the illustration as follows. First, assume that points xo and x′ belong to X (y). Then impose

convexity to obtain that any weighted average of these two points, illustrated by the line

segment x′xo connecting them, also belongs to X (y). Finally, use FDI to obtain that any

points to the northeast of the points on the line segment x′xo also belong to X (y).

Free disposability of output When there are multiple outputs, not all output bundles,

y and y′, can be ranked (ordered) using ≥. FDO only restricts production possibilities when

two output bundles can be ranked using ≥. For those bundles that can be ranked, y ≥ y′,

FDO requires that (x, y) ∈ T ⇒ (x, y′) ∈ T . Using the equivalence relation (x, y) ∈ T ⇔

x ∈ X (y) gives

• FDO ⇒ x ∈ X (y)⇒ x ∈ X (y′) for y ≥ y′.

Or, in words, if x is in the input set for y, X (y), it remains in the input set for y′, X (y′), for

for y ≥ y′. Hence, every member of X (y) must belong to X (y′), which we write in symbols

as

• FDO ⇒ X (y) ⊂ X (y′) for y ≥ y′.

FDO implies that the input set for y, X (y), is a subset of X (y′) for y ≥ y′. Figure 5 depicts

this property as the boundary for X (y) shifting towards the origin as y decreases to y′. The

2You might wonder what happens when X (y) = ∅. By convention, ∅ is convex.
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Figure 4: FDI, Convexity, and X(y)
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Figure 5: FDO and X(y)
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input set ‘expands ’ (includes more elements) as y decreases. But FDO is also satisfied,if

moving to y′ from y leaves X (y) unchanged, that is X (y′) = X (y). Strictly speaking, FDO

rules out the input set getting smaller (having fewer elements) as output decreases.

No Free Lunch and No Fixed Costs NFL requires (0, y) /∈ T if y ≥ 0 and y 6= 0 and

NFC requires (0, 0) ∈ T. Using the equivalence relation (x, y) ∈ T ⇔ x ∈ X (y), we write

these as

• NFL⇒ 0 /∈ X (y) if y ≥ 0 and y 6= 0,

• NFC ⇒ 0 ∈ X (0) .

In visual terms, NFL says that the origin, 0, cannot belong to an input set for an output

bundle, y, that contains a positive output. You cannot make something from nothing. NFC,

on the other hand, says that you can use nothing to produce nothing.

Isoquants and the Marginal Rate of Substitution

Figure 6 depicts the input-requirement set for a two-input canonical technology as everything

on or above the curve labelled X̄ (y). X̄ (y) resembles the input-requirement function, e (y),

because it provides a lower boundary for the input bundles that can produce y, X (y). But

unlike e (y), it contains a collection of points in the (x1, x2) plane rather than a single real

number.

We call the curve X̄ (y) the isoquant for y. Isoquant is a portmanteau word peculiar to

economics. It combines isos from Greek meaning ‘equal or like’ with quantity from English

to connote ‘same quantity’.3 Our use here captures the intuitive idea that all points on

the curve represent input combinations that can produce the same y. Economists have a

special interest in X̄ (y) because it gives the set of input bundles from which self-interested

producers will choose to produce y if they pay to purchase inputs. Consider, for example,

3Historians of economic thought debate to whom to assign credit for the notion of an isoquant. It parallels

utility theory’s indifference curve, which is attributed to F.Y. Edgeworth, 1881. Mathematical Psychics: An

Application of Mathematics to the Moral Sciences. G.Kegan Paul. But it seems that the terminology

originates with the Norwegian term ‘isokvant’ used in R. Frisch’s lecture notes circa 1927.
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Figure 6: An Isoquant for a Canonical Technology
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point A in Figure 6. Because it’s in X (y), it can produce y. But so can A0, which uses the

same amount of x2 but less of x1. Similarly, A1, uses the same amount of x1 but less of x2

than A. A self-interested individual who has to pay for inputs would choose either A0 or A1

over A. Points lying along curve segment A0A1 use less of both x1 and x2 than A to produce

y.

Definition 2. An input vector, x, belongs to the isoquant for y, X̄ (y), if and only if

x ∈ X (y) and any proportional shrinkage of x in the direction of the origin does not belong

to X (y).

Phrased in mathematical terms that definition becomes

X̄ (y) ≡ {x ∈ X (y) : λx /∈ X (y) for λ ∈ (0, 1)} .

To visualize, take point A0 in Figure 6. It belongs to X (y). Consider the ray from the origin

that passes through A0. That ray is described in symbols as µA0 where µ represents any

positive real number, that is µ ∈ (0,∞) (0 < µ < ∞). A0 corresponds to µ = 1. Points

beyond A0 on the ray correspond to µ > 1 and points between the origin and A0 correspond

to 0 < µ < 1. Because A0 lies in X (y) and any movement along the ray towards the origin

moves out of X (y), it belongs to the isoquant. You can use a parallel argument to convince

yourself that so does A1. On the other hand, A can be moved towards the origin without

taking it out of X (y). Thus, it does not belong to X̄ (y).

As depicted in Figure 6, the isoquant has a negative slope. That is a consequence of FDI,

which rules out a positive slope. It also resembles an upturned bowl that faces towards the

northeast. That characteristic is a consequence of convexity. Note that any two points on

X̄ (y) can be connected by a straight line segment that is contained in X (y).

Figure 7 depicts an isoquant for a three-input canonical technology in (x1, x2, x3) space

as the manifold ABCA. You can confirm that the isoquant depicted in Figure 6 can be

interpreted as fixing x3 and then projecting the manifold ABC parallel to the x3 axis onto

the (x1, x2) plane. The same general principle applies for an arbitrary number of inputs.

A fundamental tenet of economics is that self-interested individuals respond to chang-

ing or evolving market conditions by altering their economic activities. Therefore, if prices
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Figure 7: Isoquant for Three Input Technology
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change, producers respond by adjusting their behavior to accommodate those price changes.

In particular, if certain inputs become more expensive, producers will find their use less at-

tractive and may attempt to find more attractive input combinations to produce y. Economists

refer to such behavior as producers substituting some inputs for others.

To get a handle on what’s involved, let’s assume that the producer is at A0 in Figure

6. If that input bundle becomes unattractive, does the producer have alternative ways to

produce y? The answer is yes, any input bundle in X (y) will also produce y. And, of those

alternatives, the ones on X̄ (y) are the most attractive. So, suppose that the producer moves

along the isoquant to A1 from A0. Making that move involves the producer using less of x2

and more of x1, while holding y constant. Speaking economics, x1 has been substituted for

x2 in the production of y

To measure the degree to which inputs substitute for one another economists use:

Definition 3. The marginal rate of substitution (MRS) of input x1 for input x2 is the rate

at which marginal changes in x1 are substituted in X̄ (y) for marginal changes in input x2

while holding output y and all other inputs constant.

Before we offer a visual interpretation of this definition, a few comments are in order.

First, inputs 1 and 2 act as placeholders here. For a multiple-input technology, one can

define a MRS between, say, inputs k and j by replacing x1 and x2 with, respectively, xk

and xj. Second, when we speak of a MRS, we are talking about how two, and only two,

inputs interact as all other inputs and output are held constant. Third, ‘rate’ when used in

economic discussions always signals a ratio comparison. And fourth, under FDI, the MRS

can never be positive. It can be 0 or even −∞, but not positive.4

Presuming, as in our discussion of marginal products, that marginal is interpreted as

involving ‘tiny’ changes in x1 and x2 gives the visual definition for the MRS:

Definition 4. The marginal rate of substitution at x is given by the slope of the line segment

tangent to the isoquant at x.

4Some (perhaps most) authors define the MRS as the negative of our definition to avoid dealing with

negative numbers. To preserve simplicity and to avoid confusion, we do not follow that convention.
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Figure 8 illustrates with the MRS at A0 given by the slope of the dotted line segment

MRS (A0) and the MRS at A1 given by the slope of the dotted line segment MRS (A1).

As required under FDI both slopes are negative, and (when viewed from the perspective of

Figure 8: Diminishing Marginal Rate of Substitution
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the x2 axis) MRS (A1) has a flatter slope than MRS (A0). This flattening of the isoquant

is referred to as the technology exhibiting a diminishing marginal rate of substitution and is

yet another consequence of imposing convexity upon T .

To interpret this phenomenon, consider a thought experiment that involves the producer

decreasing x2 successively by the same amount while replacing the lost production potential

by increasing x1. Viewed this way, the MRS measures the change in x1 needed to balance

the x2 decrease. For each successive increment that the producer decreases x2, the principle
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of a diminishing marginal product suggests each matching decrease in y is larger. (See, for

example, the single-output technology in Figure 1). But that same principle means that

larger and larger doses of x1 are needed to balance the losses in y. So, x1 becomes a poorer

and poorer substitute for x2 as you move from, say, A0 to the southeast along V̄ (y) in Figure

8. The visual manifestation of becoming a poorer substitute is a flattening of the isoquant.

If you reverse the thought experiment and reason in terms of decreasing x1 while increasing

x2 (moving to the northwest from A0), a parallel argument shows that larger and larger

incremental doses of x2 will be needed to balance successive decreases in x1 of the same size.

Just as the notion of a marginal product presents difficulties when the graph of the

production function is kinked, so too does the MRS notion when the isoquant is kinked.

Take, for example, Figure 4. Working from the northwest to the southeast, the isoquant

for that X (y) consists of the vertical line segment that emanates from x′, the line segment

connecting x′ and xo, and the horizontal line segment emanating from xo. Along the vertical

line segment, x2 can be decreased without requiring any balancing adjustment in x1. The

rate at which x1 substitutes for a tiny decrease in x2 of the amount ϕ is −ϕ
0

, which equals

−∞ by convention. The portion of X̄ (y) lying on the line segment x′xo has a negative (but

finite) slope, and the horizontal portion has slope 0. Thus, any line segment with slope

between −∞ and the slope of the line segment x′xo will be tangent to the isoquant at x′.

Similarly, any line segment with slope between the slope of the line segment x′xo and 0 will

be tangent at xo. Kinks in isoquants are associated with multiple (an infinity) of different

marginal rates of substitution.5 Kinks in isoquants have important implications for producer

behavior. (Lecture 6 treats this issue).

Output Sets

Definition 5. The output set for x, Y (x), gives the collection of output bundles that can

be produced by input bundle x

5The set of real numbers falling between the slope of x′xo and 0 has infinitely many members.
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Written in mathematical terms, that becomes

Y (x) ≡ {y : x can produce y}

= {y : (x, y) ∈ T}

= {y : x ∈ X (y)}

Under free disposability of outputs,

Y (x) = {y : f (x) ≥ y} ,

for a single-output technology so that the production function is the upper bound of Y (x).

Thus, Y (x) resembles the production function in that it takes x as the independent variable

and defines a range of producible output but different because it isolates sets of output vectors

rather than a single output.

The following equivalence relations are immediate consequences of the definitions:

x ∈ X (y)⇔ (x, y) ∈ T ⇔ y ∈ Y (x) .

These relations reveal that in each case we study the same object, the technology, but

from different perspectives. The equivalence relation (x, y) ∈ T ⇔ y ∈ Y (x) is crucial in

establishing the properties of Y (x).

T not empty If T 6= ∅, a feasible (x, y) bundle must exist. Take that x and note that by

definition y ∈ Y (x). That gives:

• T 6= ∅ ⇒ ∃ x : Y (x) 6= ∅.

T not empty ensures that at least one input bundle, x, has a nonempty output set, Y (x).

It does not imply that Y (x) 6= ∅ for all x.

Free Disposability of Output FDO requires that if x can produce y, it can produce any

output bundle y′ whose elements are all smaller than the corresponding element in y. Figure

9 illustrates by choosing a point y that belongs to the output set for x. The output bundles,

y′ that satisfy y ≥ y′ are those to the southwest of y. FDO requires that all belong to Y (x).

Applying the equivalence relationship, (x, y) ∈ T ⇔ y ∈ Y (x), to
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Figure 9: FDO and Y(x)
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• FDO ⇒ (x, y) ∈ T then (x, y′) ∈ T for y ≥ y′

gives

• FDO ⇒ y ∈ Y (x) then y′ ∈ Y (x) for y ≥ y′.

Convexity We have already learnt that convexity requires T to be a convex set in (x, y)

space and X (y) to be a convex set in x space. It’s reasonable to conjecture that convexity

requires Y (x) to be a convex set in y space. Showing that the conjecture is true is an easy

consequence of the definition of convexity and the equivalence relation, (x, y) ∈ T ⇔ y ∈

Y (x). The definition of convexity requires

(xo, yo) ∈ T and (x′, y′) ∈ T ⇒ λ (xo, yo) + (1− λ) (x′, y′) ∈ T

for λ ∈ (0, 1) . Now take xo = x
′

= x so that we keep the input constant. Then using the

equivalence relation gives:

• Convexity ⇒ yo ∈ Y (x) and y′ ∈ Y (x)⇒ λyo + (1− λ) y
′ ∈ Y (x)

for λ ∈ (0, 1). All weighted averages of yo and y′ belonging to Y (x) also belong to Y (x).

Y (x) is a convex set in x space.

You can visualize the impact of imposing convexity by plotting two points yo and y′ in

the (y1, y2) plane. (The actual artwork is left to you as part of Exercise 4.) Convexity implies

that Y (x) contains all of the points on a line segment connecting the two points.

Free disposability of inputs Recall from Lecture 3 that FDI implies that f (x) is non-

decreasing in x (nonnegative marginal product). Intuition, therefore, suggests that a similar

property applies here. And it does.

The argument is as follows. Isolate Y (x) for x. Now consider what happens when the

input bundle is increased in any of its N dimensions to x′. FDI requires that any output

bundle that could be produced using x can still be produced. That means that every point

in Y (x) must also belong to Y (x′) for x′ ≥ x. Y (x) is a subset of Y (x′), that is

• FDO ⇒ Y (x) ⊂ Y (x′) for x′ ≥ x
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Output sets do not get smaller as the input bundle grows. Or, more output bundles can be

produced using larger input bundles than smaller ones. (You are to illustrate the result in

Exercise 5.)

Three points to consider. First, you can arrive at this conclusion by using the original

definition of FDI in terms of T , applying the equivalence relationship, (x, y) ∈ T ⇔ y ∈

Y (x), and then using the definition of a subset. Second, FDI is a statement about x′ and x

that can be ranked using ≥. Not all input bundles can be ranked according to ≥ when there

are multiple inputs. FDI imposes no restrictions over input bundles that cannot be ranked

using ≥. Third, we speak in terms of not getting smaller to ensure precision. But the strong

intuition is that increasing input bundles expands output sets.

No Free Lunch and No Fixed Cost Deriving the consequences of NFL and NFC for

Y (x) is a simple matter of applying the equivalence relationship, (x, y) ∈ T ⇔ y ∈ Y (x), to

• NFL⇒ (0, y) /∈ T if y ≥ 0 and y 6= 0 and NFC ⇒ (0, 0) ∈ T,

to obtain

• NFL⇒ y /∈ Y (0) if y ≥ 0 and y 6= 0 and NFC ⇒ 0 ∈ Y (0) .

In words, zero input cannot produce a positive input, and zero input can produce zero

output.

Transformation Curve and the Marginal Rate of Trans-

formation

Figure 10 depicts the output set for x as everything on or below the curve labelled Ȳ (x).

As drawn, Y (x) is consistent with a two-output, multiple-input canonical technology. You

can verify for yourself that it satisfies FDO and convexity. FDI will require that Y (x) gets

no smaller as x expands, and NFL is satisfied so long as x 6= 0.

We have isolated a point A, through which we have drawn the ray µA. That ray consists

of all radial (that is along a ray) expansions or contractions of output bundle A. If you
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Figure 10: The Transformation Curve
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compare A with the point where µA intersects the curve Ȳ (x), it’s clear that the latter has

more of both y1 and y2 than the former. Therefore, a self-interested individual who owned

the rights to selling the output bundles produced using x would prefer the point on Ȳ (x)

to A. If you apply this argument to all points lying below the curve Ȳ (x) you arrive at a

similar conclusion.

The curve Ȳ (x) has several aliases in economics. We call it the transformation curve

for x.6 But you may see it called, among others, the production possibilities curve, the

production possibilities frontier, or the transformation frontier. Regardless of semantics, the

set of output bundles it portrays is of special interest to economists. It gives the set of output

bundles in Y (x) at which self-interested individuals will locate their production choices. The

analogy with the isoquant is exact. To produce a given output, self-interested producers will

locate on the isoquant. In employing a fixed input bundle, self-interested producers will

locate on the transformation curve. If they do not, they forego the ability to realize revenue

from their production.

Ȳ (x)’s definition parallels that of the isoquant.

Definition 6. An output vector, y, belongs to the transformation curve for x, Ȳ (x), if and

only if y belongs to the output set for x but any proportional expansion of y outward from

the origin does not belong to the output set for x

The corresponding mathematical statement is

Ȳ (x) ≡ {y ∈ Y (x) : λy /∈ Y (x) for λ > 1} .

Thus, Ȳ (x) provides an outer boundary for Y (x). Any radial movement from it to the

northeast carries the output bundle out of the output set.

Just as we are interested in how inputs can be substituted for one another as economic

circumstances change, we are also interested in how producers, using a fixed input bundle,

respond to changing economic circumstances. Because self-interested producers will locate

on the transformation curve, economists have developed a notion of adjustments along that

curve that parallels the idea of a marginal rate of substitution. We have:

6Given our definition, “transformation set” would be more precise but that clashes with more familiar

economic jargon.
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Definition 7. The marginal rate of transformation (MRT) of output y1 for output y2 is

the rate at which marginal changes in y1 in Ȳ (x) are transformed into marginal changes in

output y2 while holding input x and all other outputs constant.

The notion of transformation that is invoked is that of producers changing the mix of their

output bundles as they move along the boundary of Ȳ (x). Starting from the point where

Ȳ (x) intersects the horizontal axis so that a positive amount of y1 but no y2 is produced,

y1 is transformed into y2 as one moves to the northwest along Ȳ (x). As in the case of the

marginal rate of substitution, y1 and y2 are placeholders here for arbitrary outputs. It makes

sense to speak of a marginal rate of transformation between any two outputs holding the

other outputs and inputs constant. Our geometric definition is:

Definition 8. Marginal Rate of Transformation (MRT) at y ∈ Ȳ (x) equals the slope of

transformation curve at y.

Referring to Figure 10, you will see that the MRT is nonpositive for all points on Ȳ (x).7

It can approach zero, but it will never become positive. This is a consequence of FDO. If

FDO is violated, we cannot argue that the slope remains nonpositive. Moreover, as you

move from the point of intersection between Ȳ (x) and the vertical axis to the southeast

along the transformation curve, its slope becomes steeper (more nearly vertical). That is a

consequence of convexity and is referred to as an increasing marginal rate of transformation.

This phenomenon is the ‘flip-side’ of the ‘decreasing rate of marginal substitution’ and is

illustrated using a parallel thought experiment. Imagine that you are a producer with a fixed

bundle of inputs. You can choose how to allocate those inputs to different activities, but you

cannot vary their absolute amount. Now starting at a point where all of your x is devoted

to producing y2 (where Ȳ (x) intersects the vertical axis) imagine trying to increase the

production of y1 successively by the same amount. As we showed in the single-output case

with e (y), this requires larger and larger reallocations of that fixed input bundle towards

producing y1. But diverting resources from y2, by the principle of diminishing marginal

7Many authors define the marginal rate of transformation in absolute value terms. Just as we avoided

defining the marginal rate of substitution in absolute value terms, we avoid the similar convention for MRT.
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returns, evokes ever larger decreases in y2. The visual manifestation is a steeper slope for

Ȳ (x).

A Closing Word About Convexity∗

Imposing convexity upon T ensures that the graphs of f (x), e (y), X̄ (y), and Ȳ (x) possess a

curvature that is consistent with the generalized principle of diminishing returns. From our

presentation, it’s natural to construe that a diminishing marginal productivity, a diminishing

marginal rate of substitution, and an increasing marginal rate of transformation all manifest

the same phenomenon.

While intuitive, it’s not correct. Our discussion shows that imposing convexity on T

implies a diminishing marginal product, a diminishing rate of substitution, and an increasing

marginal rate of transformation. But it is not true that if X (y) is a convex set, which is the

basis for the diminishing marginal rate of substitution, that T must be a convex set. Nor

is it true that if Y (x) is a convex set that T must be convex. Thus, while a diminishing

marginal rate of substitution and an increasing rate of transformation manifest phenomena

similar to a diminishing marginal product they are different.

To illustrate, we use the equivalence relationships

x ∈ X (y)⇔ (x, y) ∈ T ⇔ y ∈ Y (x) .

For X (y) to be a convex set, all weighted averages (convex combinations) of all its elements

must belong to X (y). We write this as

xo ∈ X (y) and x′ ∈ X (y)⇒ λxo + (1− λ)x′ ∈ X (y) for λ ∈ (0, 1) .

Using the equivalence relationship shows that this requires that

y ∈ Y (xo) and y ∈ Y (x′)⇒ y ∈ Y (λxo + (1− λ)x′) for λ ∈ (0, 1) . (1)

Expression (??) requires that if y belongs to both Y (xo) and Y (x′), it must belong to the

output sets for all weighted averages of xo and x′. But if y belongs to Y (xo) and Y (x′),

then it belongs to their intersection, y ∈ Y (xo) ∩ Y (x′). Thus, expression (??) becomes
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y ∈ Y (xo) ∩ Y (x′)⇒ y ∈ Y (λxo + (1− λ)x′) forλ ∈ (0, 1) . (2)

Expression (??) does not require that Y (x) is convex as a set, which is required by convexity

of T .8 Therefore, convexity of X (y) and T as sets have different consequences for Y (x).

They are different properties. And because convexity of T implies convexity of X (y), but

not the other way around, convexity of T is the stronger restriction.

8For the single-output, multiple-input technology technology, this condition requires that f (x) is quasi-

concave, which is a weaker condition than concave.
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Exercises

1. Explain why nonemptines of T (T 6= ∅) does not imply that X (y) 6= ∅ for all y.

2. Suppose that you know that x′ ∈ X (y) and xo ∈ X (y). Impose free disposability of

inputs (FDI) and illustrate the result. Impose convexity on the resulting set and illustrate

the result. Compare and contrast it with Figure 4.

3. Explain why nonemptines of T (T 6= ∅) does not imply that Y (x) 6= ∅ for all x.

4. Suppose that you know that y′ ∈ Y (x) and yo ∈ Y (x). Impose convexity T and illustrate

the consequences for X (y). Illustrate what happens if you then impose free disposability of

output (FDO).

5. Illustrate and discuss the consequence of imposing FDI upon Y (x).

6∗. Illustrate the property described in (??) geometrically.

7∗. Derive and illustrate geometrically the consequences of requiring Y (x) to be a convex

set (without imposing convexity on T ) for X (y).
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Lecture Introduction

So far, our focus has been on the technology, T . In this lecture, we start our economic

analysis by introducing the concepts of profit, cost, revenue, and their geometric illustrations.

We then use a simple single-input, single-output model to study the basic principles of

profit maximization. We close by showing that profit-maximizing producers always minimize

cost and maximize revenue. That demonstration identifies the relationships between three

important economic objects, the profit function, the cost function, and the revenue function

that provide the primary focus of Lectures 6 through 9.

Profit, Cost, and Revenue: Definitions and a Geometric

Overview

As explained in Lecture 2, we treat producers who operate in competitive markets and face

fixed prices that they cannot manipulate. The prices for inputs are strictly positive, and we

denote them by the N-dimensional real vector w = (w1, w2, ..., wN). Here, for example, wn

represents the price of the nth input. The prices at which producers sell their outputs are

strictly positive and are denoted by the M-dimensional real vector p = (p1, p2, ..., pM).

A self-interested, price-taking producer seeks the largest possible profit. Profit is the

difference between the producer’s revenue and the producer’s cost. We denote it by π (the

Greek letter ‘pi’) so that

π ≡ r − c,

where

r ≡ py ≡
∑
m

pmym = p1y1 + p2y2 + ...+ pMym,

the sum taken over all outputs of each output price times the amount sold, is revenue, and

c ≡ wx ≡
∑
n

wnxn = w1x1 + w2x2 + ...+ wNxN ,

the sum taken over all inputs of the input price times the amount purchased, is cost.

The assumption that prices are positive (p > 0 and w > 0) means that markets evaluate

inputs and outputs as “goods” rather than as “bads”. We saw in Lecture 2 that inputs
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and outputs can be undesireable, but our basic producer model abstracts from such issues

to narrow the focus on the economic principles guiding producer behavior.1 Because we

treat profit maximizers, we assume that the producer has the exclusive right to revenue from

output sales and the sole responsibility for production costs.

Prices, profit, cost, and revenue are expressed in currency units. Economists call prices,

profit, cost, or revenue denominated in currency units (be they dollars, euros, renminbi, etc.)

nominal. In contrast, the real or relative price of commodity A in units of commodity B

is derived by dividing A’s nominal price by B’s nominal price to obtain pA/pB.2 When B’s

price is used as the divisor in creating a real price, B is called the numeraire. The real price

of the numeraire is thus 1. Real profit, cost, and revenue are derived in a similar fashion.

Economists often distinguish nominal changes from real changes by representing a nom-

inal change as multiplying the nominal value of each variable by a common positive real

number, µ > 0. Such changes are also called proportional because the percentage changes

are common across the variables. For example, by moving from p to 3p (so that µ = 3), the

percentage change in the mth price is

3pm − pm
pm

= 2

which is common for all m. Such changes are nominal because they leave relative prices

unchanged. For example, if output 1 is the numeraire then before and after multiplication

of nominal prices by a common positive real number the real prices satisfy(
1,
p2
p1
, ...,

pM
p1

)
=

(
1,
µp2
µp1

, ...,
µpM
µp1

)
.

Visual illustrations of profit, revenue, and cost are key to explaining our ideas. Take

profit, and assume that T has a single input and a single output. Profit is now a linear

function of the input and the output (x, y),

π = py − wx.

We first rewrite this expression with output, y, treated as the dependent variable of a function

of input, x, and real profit, π/p. Divide both sides of the profit definition by the output price,

1The appropriate modelling of good and bad inputs and outputs remains controversial, especially in areas

of economics, such as environmental economics, that often ignore technical production issues in their models.
2The terms, real and relative, are used interchangeably throughout the lectures.
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p, and add w
p
x to both sides to get

y =
π

p
+
w

p
x.

Figure 1 depicts this linear function as the straight line that intersects the vertical axis

(measuring y) at π/p (real profit in units of output) that has slope in x of w/p (real price of

the input in units of the output).3 This line traces out the set of points in the (x, y) plane

that give a real profit of π/p when prices are (w, p). We call it the isoprofit line (hyperplane)

for (π, p, w), and represent it in symbols as P̄ (π, p, w). (A hyperplane is a higher dimensional

version of a line.)

As its name suggests, the isoprofit line is similar to the isoquant (and the transformation

curve) because it isolates a collection (set) of quantities that give the same outcome. It

differs, however, because it arises from producer interaction with competitive markets and

not the technology, T . Its formal definition (which applies regardless of the dimension of x

and y) is:

Definition 1. An isoprofit line (hyperplane) for (π, p, w), P̄ (π, p, w), is the set of input-

output bundles that give a profit of π at prices (p, w) .

We write this verbal definition in mathematical symbols as:

P̄ (π, p, w) ≡ {(x, y) : π = py − wx} .

Exercise 1 asks you to show that: if (π, p, w) vary proportionately so that (π/p, w/p) remain

unchanged, P̄ (π, p, w) remains unchanged (the isoprofit line is homogeneous of degree zero

in (π, p, w)); if π increases holding (p, w) constant, the vertical intercept of the isoprofit

line shifts up, and the slope remains unchanged resulting in a parallel upwards shift; if w

increases while holding (π, p) constant, so that inputs become more expensive, the slope of

3The choice of the dependent variable and the independent variable in Figure 1 is arbitrary. We use

y because our convention is to represent T with outputs depicted on the vertical axis and inputs on the

horizontal axis. But if you choose x to be the dependent variable, you obtain

x =
p

w
y − π

w
,

as the formula for the isoprofit line. If you graph this version in (x, y) space you obtain Figure 1.
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Figure 1: Isoprofit Line P̄ (π, p, w)
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the isoprofit line becomes steeper without changing the vertical intercept; and if p increases

while holding (π,w) constant, the vertical intercept shifts downward and the slope becomes

flatter. (You, of course, are encouraged to also consider what happens when these increases

are replaced by decreases.)

The areas in (x, y) space on or above an isoprofit line (hyperplane)

P+ (π, p, w) ≡ {(x, y) : py − wx ≥ π}

or on or below it

P− (π, p, w) ≡ {(x, y) : py − wx ≤ π}

are called closed half spaces in math jargon. Because they are defined as everything on or

to one side of a line (hyperplane), half spaces form convex sets in (x, y) space. You can

verify this by inspecting Figure 2. For example, take any two points falling on or below the

isoprofit line P̄ (π, p, w) in the area labelled P− (π, p, w). If you connect them with a straight

line segment, all the resulting weighted averages fall on or below the isoprofit line.

Turning to cost, let N=2 so that cost, c, is a linear function of x1 and x2

c = w1x1 + w2x2.

To represent this in the (x1, x2) plane, we rewrite it as

x2 =
c

w2

− w1

w2

x1

and depict it in Figure 3 by the line with negative slope −w1

w2
, vertical intercept c

w2
, and

horizontal intercept c
w1

. It gives all the points in the (x1, x2) plane that incur a cost of c

when input prices are (w1, w2) . We call this line the isocost line (hyperplane) and denote it

by C̄ (c, w). Its definition (which applies regardless of the dimension of x) is

Definition 2. An isocost line (hyperplane) for (c, w), C̄ (c, w), is the set of input bundles

that give a cost of c at input prices w.

The mathematical version is:

C̄ (c, w) ≡ {x : c = wx}
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Figure 2: Profit Half Spaces
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Figure 3: Isocost Line C̄ (c, w)
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Exercise 2 asks you to show that: if (c, w1, w2) vary proportionately keeping (c/w2, w1/w2)

constant, C̄ (c, w) is unchanged (C̄ (c, w) is homogeneous of degree zero in (c, w)); decreasing c

while leaving (w1, w2) unchanged causes a parallel shift in the isocost line towards the origin;

increasing w1 holding c and w2 constant causes the horizontal intercept of C̄ (c, w) to shift

towards the origin and the slope of the isocost line to become steeper (when viewed from

the perspective of x2); increasing w2 while holding c and w1 constant causes the horizontal

intercept to shift towards the origin and the slope of the isocost cost line to become flatter.

The half spaces in (x1, x2) space associated with C̄ (c, w) are:

C+ (c, w) ≡ {x : wx ≥ c}

and

C− (c, w) ≡ {x : wx ≤ c} .

That brings us to revenue. Let M=2 (two outputs) so that

r = p1y1 + p2y2.

Mimicking arguments made for π and c, we transform this expression into a function of real

revenue ( r
p2

) and real revenue from sales of good 1 (p1
p2
y1) with y2 as the dependent variable

y2 =
r

p2
− p1
p2
y1

that we illustrate in Figure 4 by the line segment with vertical intercept r
p2

, slope −p1
p2

, and

horizontal intercept r
p1

. We refer to that line as the isorevenue line, denote it by R̄ (r, p),

and define it as

Definition 3. An isorevenue line (hyperplane) for (r, p), R̄ (r, p), is the set of output bundles

that give a revenue of r at output prices p.

The mathematical definition of R̄ (r, p) is

R̄ (r, p) ≡ {y : r = py} .

You should experiment with Figure 4 to determine how various permutations of changes in

(r, p) change the visual representation of R̄ (r, p)
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Figure 4: Isorevenue Line R̄ (r, p)
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Profit maximizing (rational) producers

We now have the tools to examine the behavior of self-interested, price-taking producers.

That behavior captures how producers respond to market signals in the form of prices (p, w)

in the presence of feasibility constraints imposed by T . The producer’s problem is to choose

a technically feasible input-output bundle, (x, y) ∈ T , that makes profit, py − wx, as large

as possible. In mathematical terms, producer’s profit-maximization problem is written:

π (p, w) ≡ max
x,y
{py − wx : (x, y) ∈ T} .

Here π (p, w) is the real-valued function of output and input prices that gives the maximum

feasible profit for prices (p, w). As before, maxx,y {·} is an instruction to search over x and

y to find the largest element in the set {·} that contains profits, py − wx, conditional on

(x, y) ∈ T . That means the producer seeks an (x∗, y∗) ∈ T such that

py∗ − wx∗ ≥ py − wx,

for all (x, y) ∈ T . We call π (·) the profit function.

We take a geometric approach and first treat the simple, single-input, single-output case.

Figure 5 depicts the technology set, T , as an irregular heptagon. This shape may appear

bizarre, but it was chosen purposely to ensure that T does not satisfy FDI, FDO, and

convexity. That’s done to emphasize that those properties are not essential to the argument.

Figure 6 augments Figure 5 by introducing the isoprofit line for (πo, po, wo), P̄ (πo, po, wo).

The producer, as a price taker, cannot manipulate po or wo. But, in the case illustrated, the

producer can make a higher profit than πo because a feasible input-output bundle, (x′, y′),

exists that lies on a higher isoprofit line. You can verify this by noting that (x′, y′) lies on

the dotted line segment having the same slope as P̄ (πo, po, wo) that intersects the vertical

axis aboveπ
o

po
so that poy′ − wox′ > πo. Therefore, πo is not the largest profit available from

T .

Instead, the producer maximizes profit for prices (po, wo) at the point (x∗, y∗). The

isoprofit line through (x∗, y∗), P̄ (poy∗ − wox∗, po, wo), shares a point in common with (inter-

sects) T and defines the closed half space below it, P− (poy∗ − wox∗, po, wo), that contains T
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Figure 5: A Technology Set
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Figure 6: Maximizing Profit
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as a subset. We write these conditions, respectively, in symbols as

(x∗, y∗) ∈ P̄ (poy∗ − wox∗, po, wo) ∩ T,

and

T ⊂ P− (poy∗ − wox∗, po, wo) .

Together, they require that (x∗, y∗) ∈ T and

poy∗ − wox∗ ≥ poy − wox,

for all (x, y) ∈ T .

Let’s see why the solution must occur at (x∗, y∗). Consider, for example, the consequences

of producing at a point such as (x′, y′) that falls inside T . At that input-output bundle, the

producer can keep the input fixed at x′ and increase the output above y′. Because the input

is held fixed, cost does not change. But increasing output increases revenue so that profit

increases. That means (x′, y′) cannot be profit maximizing.

Another way to reach the same conclusion is to keep the output fixed at y′, but to decrease

x below x′. That leaves revenue unchanged but decreases cost. Again profit increases. Points

such as (x′, y′) cannot be profit maximizing.

The general principle is:Any input-output choice that falls on an isoprofit line that passes

inside of the technology set cannot be profit maximizing. Take a point such as A. Because

it’s on the boundary of T, it’s technically feasible. But it also falls on an isoprofit line

that passes inside the heptagon defining T . Because that isoprofit line passes inside the

heptagon, it contains points such as (x′, y′) that allow profit-increasing moves. But because

(x′, y′) and A lie on the same isoprofit line, they share a common profit, and A cannot be

profit maximizing because feasible points exist that are more profitable than (x′, y′).

The producer maximizes profit by finding an input-output bundle where the isoprofit line

through it touches T without going inside it. Because the isoprofit line just ‘touches’, or

more euphemistically ‘kisses’, T ’s boundary at the solution, it is tangent to T ’s boundary.

A tangency is needed. But a tangency is not enough. In addition, T can contain no points

lying on a higher isoprofit line than the profit maximizer. T must, therefore, fall in the half

space below the isoprofit line through (x∗, y∗).
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Thus, the isoprofit line (hyperplane) for the solution, P̄ (poy∗ − wox∗, po, wo), bounds

T from above while sharing a point with it. The hyperplane is said to support T from

above. Perhaps, you’ve seen optimal solutions described as tangencies elsewhere in eco-

nomics. That’s not wrong, but more is required. You can experiment with Figure 6 to find

other isoprofit lines with the same slope as the one through (x∗, y∗) that ‘kiss’ T , but involve

a lower profit. (See Exercise 4.)

In characterizing the profit-maximizing solution we used ∈ rather than = in the statement

(x∗, y∗) ∈ P̄ (poy∗ − wox∗, po, wo) ∩ T.

That was intentional. Depending upon the shape of T and the structure of real prices,

situations can arise where multiple elements of T solve the profit maximizing problem. Figure

7 illustrates a case where a continuum (an infinity) of points belonging to T are profit

maximizing.

Profit Maximizers are Cost Minimizers and Revenue

Maximizers

You can confirm in Figure 6 that y∗ = f (x∗) and x∗ = e (y∗). In the single-input, single-

output setting that implies that y∗ solves

R (p, x∗) ≡ max
y
{py : (x∗, y) ∈ T}

and that x∗ solves

c (w, y∗) ≡ min
x
{wx : (x, y∗) ∈ T} .

That is, y∗ maximizes the revenue that can be generated using x∗, and x∗ is the cheapest

feasible way to produce y∗. This result manifests the following general principle that applies

regardless of the dimension of x and y.

Proposition 1. Profit maximizing producers always produce their optimal output at mini-

mal cost and maximize the revenue received from their optimal input.
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Figure 7: Multiple Profit-maximizing Solutions
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To demonstrate Proposition 1, let (x∗, y∗) be a profit maximizing choice of inputs and

outputs for (p, w) so that

π (p, w) = max
x,y
{py − wx : (x, y) ∈ T}

= py∗ − wx∗

The first statement in Proposition 1 claims that x∗ is the cheapest way to produce y∗. Stated

in mathematical terms, that requires

min
x
{wx : (x, y∗) ∈ T} = wx∗.

To verify, we use a proof by contradiction. That is, we assume that the statement we want

to verify, in this case,

min
x
{wx : (x, y∗) ∈ T} = wx∗

is false and then show that assumption leads to a contradiction of known facts.

So, assume that the first part of Proposition 1 is false and that x∗ is not the cheapest

way to produce y∗. That means that another input bundle, call it xo, must exist that can

produce y∗, (xo, y∗) ∈ T , and that is strictly cheaper than x∗,

wxo < wx∗.

But this inequality implies that

py∗ − wxo > py∗ − wx∗ = π (p, w) ,

which says that (xo, y∗) ∈ T gives more than the maximal feasible profit π (p, w). But this is

impossible. We have arrived at a contradiction, and we conclude that profit maximizing x∗

is cost minimizing for y∗.

A parallel argument, which we leave to you as Exercise 5, verifies the second part of

Proposition 1. This proposition has important analytic consequences that require emphasis.

It shows that we can recast the profit-maximization problem as:

π (p, w) = max
x,y
{py − wx : (x, y) ∈ T}

= max
y
{py − c (w, y)} ,
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or as

π (p, w) = max
x,y
{py − wx : (x, y) ∈ T}

= max
x
{R (p, x)− wx} .

Thus, three distinct, but equivalent, versions of the profit-maximization problem exist.

The first version is the one illustrated using Figure 6. The second is a two-stage approach.

In the first stage (cost minimization), the producer chooses inputs to minimize the cost of

producing a given output bundle, y. That is, the producer solves

c (w, y)) ≡ min
x
{wx : (x, y) ∈ T}

to obtain the cost function, c (w, y), that gives the cheapest way to produce the output.

Then in the second stage the producer solves the profit maximization problem by choosing

the profit maximizing output bundle. The third version offers a different two-stage approach.

In the third version, the first-stage revenue maximization problem is to choose outputs to

maximize the revenue attainable from a fixed input bundle, x. So, the producer first solves

R (p, x) ≡ max
y
{py : (x, y) ∈ T}

to obtain the revenue function, R (p, x), that gives the maximum possible revenue that can

be generated from the input bundle x. Then in the second stage the producer chooses the

profit maximizing input bundle.

These two-stage versions of the profit-maximization problem facilitate more focused eco-

nomic analyses. The cost minimization case focuses on input interaction, and the revenue-

maximization case focuses on output interaction. Both cases are examples of thought exper-

iments used to simplify analysis. In the cost instance, output variation is “controlled” by

holding y fixed permitting inputs to vary. In the revenue instance, the roles are switched.

This analytic device mirrors a familiar strategy for solving complex decisions by breaking

them into more easily digestible “sub-problems”. (These decompositions are special cases

of a more general principle on maximization known as Bellman’s Principle, after the 20th

century mathematician Richard E. Bellman.) We emphasize that the decomposition ap-

proach to solving the profit maximization is an analytic strategy that offers a tractable way
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for production economists to analyze producer behavior. The argument isn’t that real-world

producers are automatons who follow these two-stage algorithms, but that such analytic

devices improve the economist’s ability to understand and predict producer behavior.
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Exercises

1. Show that if (π, p, w) vary proportionately so that (π/p, w/p) remain unchanged, P̄ (π, p, w)

remains unchanged (the isoprofit line is homogeneous of degree zero in (π, p, w)); if π in-

creases holding (p, w) constant, the vertical intercept of the isoprofit line shifts up, and the

slope remains unchanged resulting in a parallel upwards shift; if w increases while holding

(π, p) constant, so that inputs become more expensive, the slope of the isoprofit line be-

comes steeper without changing the vertical intercept; and if p increases while holding (π,w)

constant, the vertical intercept shifts downward and the slope becomes flatter.

2. Show that if (c, w1, w2) vary proportionately so that (c/w2, w1/w2) remain unchanged,

C̄ (c, w) remains unchanged (C̄ (c, w) is homogeneous of degree zero in (c, w)); decreasing c

while leaving (w1, w2) unchanged causes a parallel shift in the isocost line towards the origin;

increasing w1 holding c and w2 constant causes the horizontal intercept of C̄ (c, w) to shift

back towards the origin and the slope of the isocost line to become steeper (when viewed from

the perspective of x2); increasing w2 while holding c and w1 constant causes the horizontal

intercept to shift towards the origin and the slope of the isocost cost line to become flatter.

3. Draw a picture that illustrates C+ (c, w) and C− (c, w).

4. Explain why point B in Figure 6 is not profit maximizing.

5. Let (x∗, y∗) be profit maximizing. Prove that

max
y
{py : (x∗, y) ∈ T} = py∗,
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Lecture Introduction

In this lecture we study producers who minimize the cost of producing their output. The

core notion is the cost function, c (w, y), introduced in Lecture 5. As Lecture 5 shows (see

Figure 5.6), when the technology has a single input, c (w, y) = we (y). So, one natural

interpretation of c (w, y) is as the money-metric generalization of the input-requirement

function. The natural roadblock to generalizing e (y) to multiple inputs is our inability to

add different inputs in a meaningful manner. The cost function removes that obstacle by

converting inputs to monetary values and then adding.

We first illustrate the solution to the cost-minimization problem using the style of argu-

ment introduced in Lecture 5. Then we characterize c (w, y)’s behavior as a function of the

input prices, w. We emphasize that this characterization only requires one restriction on T ,

which is that X (y) 6= ∅. We close the lecture by examining the consequences for c (w, y), as

a function of outputs, y, of imposing restrictions upon T .

A Visual Perspective on Cost Minimization

Figure 1 depicts two objects in the (x1, x2) plane. The first is a nonempty input set with

isoquant, X̄ (y). It’s drawn to be smooth, consistent with convexity, and to satisfy FDI.

(These are not essential to the argument.) The second object is the isocost line for a cost

of co dollars and input prices w, C̄ (co, w). The isocost line and the input set intersect,

C̄ (co, w) ∩ X (y) 6= ∅. So, points on the isocost line fall in the input set, and the producer

can spend co dollars and afford to produce y.

There are input bundles that fall below C̄ (co, w) but above X̄ (y). Such input bundles

can produce y but fall inside C− (co, w) and so cost less than co. co is not the minimal cost

to produce y. Following the arguments used in Lecture 5, a cost-minimizing solution cannot

occur inside of X (y) or at a point on X̄ (y) that is on an isocost line that passes inside

of X (y). The cost minimizing solution, call it x∗, occurs where its isocost line, C̄ (wx∗, w),

touches X̄ (y) and X (y) is contained in the half space above it, C+ (wx∗, w) . That is, x∗ is

Copyright © 2024 Robert G. Chambers



Figure 1: The Minimal Cost Problem
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cost minimizing for y if and only if

x∗ ∈ X (y) ∩ C̄ (wx∗, w) and

X (y) ⊂ C+ (wx∗, w)

so that C̄ (wx∗, w) supports X (y) from below.1 The input set is tangent to and ‘sits’ on

the isocost line. The implied tangency between X̄ (y) and C̄ (c, w) gives the rule-of-thumb

for cost minimization: the marginal rate of substitution equals (minus) the input-price ratio.

Figure 2 illustrates.

Figure 2: A Minimal-Cost Solution
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1Recall from Chapter 5 that the requirement for profit maximization is that the isoprofit line support T

from above. We seek to minimize cost so the logic and intuition is reversed and support must be from below.
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The Cost Function and Its Properties in Input Prices

Definition 1. The cost function, c (w, y), for input prices, w, and output bundle, y, gives

the minimal cost of producing y.

The mathematical version of this definition reiterates the one offered in Lecture 5:2

c (w, y) ≡ min
x
{wx : (x, y) ∈ T}

= min
x
{wx : x ∈ X (y)} .

Provided that y can be produced, that is, X (y) 6= ∅, c (w, y) is well defined. We state its

properties as a function of input prices, w. Then we explain and discuss them.

Cost Function Properties in Input Prices

• c (w, y) ≥ 0 (c (w, y) nonnegative)

• w′ ≥ w ⇒ c (w′, y) ≥ c (w, y) (nondecreasing in w)

• c (µw, y) = µc (w, y) µ > 0 (positively homogeneous in w)

• c (λwo + (1− λ)w′, y) ≥ λc (wo, y) + (1− λ) c (w′, y) λ ∈ (0, 1) (concave in w)

c (w, y) nonnegative This property follows from measuring inputs and input prices as

nonnegative real numbers. Cost, as the sum of input prices times input use, must be non-

negative.

c (w, y) is nondecreasing in w Let x′ be the cheapest way to produce y for w′, so that

w′x′ = c (w′, y) .

Now let input prices fall to w from w′ so that w′ ≥ w. Because X (y) does not depend upon

input prices, x′ can still produce y. Thus, “doing nothing” is a feasible response to the input

price change. The cost of the “do-nothing” response is

wx′ ≤ w′x′.

2The cost function, c (w, y), in math terms is the support function for the set X (y).
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The best producer response to input prices falling cannot cost more than the “do-nothing”

response so that

c (w, y) = min {wx : x ∈ X (y)} ≤ wx′.

Combining these arguments gives

c (w′, y) ≥ wx′ ≥ c (w, y)

for w′ ≥ w, as required.

If inputs become more expensive, the minimal cost of producing an output cannot de-

crease. When depicted in (w, c) space, the graph of c (w, y) can have a positive or zero slope,

but never negative.

Positive homogeneity in w (only real prices matter) The aphorism ‘only real prices

matter’ summarizes this property. Producers do not respond to nominal input price changes

that leave real input prices unchanged.

Look at Figure 1 and consider multiplying all input prices, w, by a common positive

number, µ > 0. That causes the vertical and horizontal intercepts of the isocost line to shift

towards the origin if µ > 1 and towards ∞ if µ < 1. But its slope is unchanged because

−µw1

µw2

= −w1

w2

.

As Figure 2 illustrates, the key to where the producer locates on X̄ (y) is where its slope

equals the isocost’s slope −w1

w2
. Call the solution x∗. Because −w1

w2
is constant for nominal

price changes, x∗ stays a solution when all input prices are multiplied by a common multiple.

Nominal costs change to µwx∗ = µc (w, y), however, as nominal input prices move to µw

from w.

The formal version of this argument invokes the definition of c (w, y) at µ > 0:

c (µw, y) = min {µwx : x ∈ X (y)}

= µmin {wx : x ∈ X (y)}

= µc (w, y)
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The second equality is the key. It recognizes that making µwx as small as possible by varying

x, with µ a fixed positive number, requires making wx as small as possible. And so, if x∗

makes wx as small as possible, it does the same for µwx.

One way to think about why ‘only real prices matter’ is to think of re-stating prices

denominated in US dollars ($) in terms of cents. Moving from dollars to cents multiplies

nominal prices by 100, a special case of µ > 0. But in terms of real buying power, nothing

changes.

c (w, y) is concave in w Before showing that c (w, y) is concave in w, let’s see its economic

meaning. We know that the graph of c (w, y) in (w, c) space does not have a negative slope.

So, our intuition is that c (w, y) rises as input prices rise. From our discussion of concave

production functions in Lecture 3, we know that concavity in w means that c (w, y)’s slope

is nonincreasing in w. Figure 3 illustrates the case where it is decreasing.

Pick an arbitrary input price, w∗, and mark off its cost on the vertical axis in Figure 3,

c (w∗, y) = w∗x∗,

where x∗ now represents the cost minimizing input bundle when input prices are w∗. When

input prices change, the producer must decide how to adjust the input bundle. Because input

price changes do not affect X (y), the only technical requirement is that the adjustment keeps

the input bundle in X (y). “Doing nothing” is a feasible response. So, let prices change to

wo and assume that the producer does nothing. The producer’s cost is now wox∗, and the

cost change is (wo − w∗)x∗. We illustrate the “do-nothing” response in Figure 4 by moving

along the line segment connecting (w∗, w∗x∗) and (wo, wox∗), whose slope is x∗. (Exercise 2

asks you to to verify that similar reasoning applies for price rises.)

Because “doing nothing” is a feasible reaction, it places an upper bound on the producer’s

best response to the price change. Therefore, the minimal cost at the new prices wo cannot

be larger than wox∗, that is

c (wo, y) ≤ wox∗.

But that’s what a cost function concave in w predicts as Figure 4 shows.

Why is this true? In Figure 4, we assume that the producer does not respond to the input-

price change. This is possible, but is it expected? Let’s return to Figure 2 and consider how
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Figure 3: Cost Concave in w
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Figure 4: Shephard’s Lemma
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that solution changes if prices change. If both prices change proportionately, no adjustment

is made. But if the price of input 1 falls by 50 per cent, the slope of the isocost line becomes

flatter (from the perspective of the x2 axis). The isocost line through the “do-nothing”

option now passes inside X (y). As Figure 5 illustrates, cheaper alternatives are available.

(In Figure 5, the line segment labelled with a perpendicular arrow wo is the isocost line for

the prices wo.) Thus, if the producer can substitute more of the now cheaper input 1 for

Figure 5: Price Change Causes Substitution
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input 2, costs can be decreased beyond the “do-nothing” option.

Concavity of the cost function in input prices manifests the producer’s ability to substitute

between inputs in response to price changes.

Verifying these arguments in arbitrary dimensions is easy, but requires some algebra (mul-
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tiplication and addition) and reasoning. We want to compare three values, c (λwo + (1− λ)w′, y),

c (wo, y), and c (w′, y). Let x∗ represent the input bundle that solves the cost-minimizing

problem for a weighted average of wo and w′, λwo + (1− λ)w′ for some λ ∈ (0, 1) . That is,

(λwo + (1− λ)w′)x∗ = c (λwo + (1− λ)w′, y) .

Because x∗ is the solution to the cost-minimizing problem for this weighted average price,

λwo + (1− λ)w′, it must belong to X (y). But that means

wox∗ ≥ c (wo, y) and

w′x∗ ≥ c (w′, y) .

x∗ must be at least as expensive at input prices wo and w∗ as the respective cost minimizing

bundles. Multiplying both sides of the first inequality by λ > 0, both sides of the second by

1− λ > 0, and adding the results gives

(λwo + (1− λ)w′)x∗ ≥ λc (wo, y) + (1− λ) c (w′, y) .

The left hand side of this inequality equals c (λwo + (1− λ)w′, y). Making that substitution,

we have

c (λwo + (1− λ)w′, y) ≥ λc (wo, y) + (1− λ) c (w′, y)

for λ ∈ (0, 1), which is what we wanted to show. This concludes the argument.

Cost Minimizing Input Demands

Just as we are interested in how costs behave as input prices change, so too are we interested

in how cost minimizing demands respond to price changes.

Definition 2. A cost minimizing demand vector, x (w, y), for input prices w and output y

is any solution to the cost minimization problem for w and y.

The mathematical version of the definition is

x (w, y) ∈ argmin
x
{wx : x ∈ X (y)} .
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Here the expression “argminx {·} ” can be written in words as “any x that gives the minimal

value in the set {·}”. We intentionally use ∈ rather than = because there can be multiple

input bundles that provide the same minimal cost (see Exercise 3).

Our focus is on x (w, y) as a function of w holding y constant. We start by repeating

a basic observation. Because x (w, y) is cost minimizing for y, it must belong to X (y).

Therefore, if we choose an arbitrary w∗

wox (w∗, y) ≥ c (wo, y)

for all possible wo, and

w∗x (w∗, y) = c (w∗, y) .

In words, wox (w∗, y) is always greater than or equal to the minimal cost for input prices wo,

c (wo, y), and equals it when wo = w∗. Subtracting the second expression from the first gives

(wo − w∗)x (w∗, y) ≥ c (wo, y)− c (w∗, y) (1)

for all wo as a condition that cost-minimizing demands must satisfy.3 The intuition is that

the cost change associated with doing nothing as input prices change is always larger than

the change in minimal cost.

The expression,

wox (w∗, y) ≡
N∑

n=1

wo
nxn (w∗, y) ,

where xn (w∗, y) represents the cost-minimizing demand for the nth input, is a linear func-

tion of the input prices wo whose slopes equal the respective cost minimizing demands,

(x1 (w∗, y) , x2 (w∗, y) , . . . , xN (w∗, y)). We have just shown that the cost function, c (wo, y),

is a concave function of the input prices wo. So, we can rephrase

wox (w∗, y) ≥ c (wo, y) ,

and

w∗x (w∗, y) = c (w∗, y)

3In mathematical jargon, expression (1) says that the input demand, x (w∗, y), is a supergradient for

c (w, y) at w∗.
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for all wo as requiring that the linear function wox (w∗, y) provides an upper bound to the

concave function c (wo, y) that equals it when wo = w∗. In geometric terms, the graph of the

linear function, wox (w∗, y), always lies above the graph of the concave function, c (wo, y), in

(wo, c) space and coincides with it at (w∗, c (w∗, y)).

To visualize, consider Figure 4 and let x (w∗, y) ≡ x∗ in the figure. The graph of the linear

function, wox∗ in the (wo, c) plane is illustrated by the “Do-nothing” line segment passing

through (w∗, c (w∗, y)) and (wo, wox∗). The “Do-nothing” line segment lies everywhere above

the graph of the cost function and just touches (is tangent to) it at (w∗, c (w∗, y)). We

conclude that the cost-minimizing demand for the input at input prices w∗ is given by the

slope of the “Do-nothing” line tangent to the graph of c (w, y) at (w∗, c (w∗, y)).

Our argument works regardless of the number of inputs. When a linear function has more

than one argument, its graph is not referred to as a line but as a hyperplane (plane works

for two dimensions, the hyper is for three dimensions and above), and the N-dimensional

analogue of the slope is a vector referred to as its normal. Thus, for the linear function of

wo,

wox (w∗, y) ≡
N∑

n=1

w0
nxn (w∗, y) ,

its normal is the vector

(x1 (w∗, y) , x2 (w∗, y) , ..., xN (w∗, y)) ≡ x (w∗, y)

of cost minimizing demands at w∗.

These arguments yield a famous result in economics:4

Shephard’s Lemma For all w∗ and y, any solution to the cost-minimization problem,

x (w∗, y) must be the normal for a hyperplane tangent to the graph of c (w, y) at

(w∗, c (w∗, y)).

4You may encounter another version of this result elsewhere, which runs: The vector of cost minimizing

demands at w∗ equals the gradient of the cost function at w∗. That isn’t wrong, but it requires additional

structure upon T . Thus, it is less general. The more precise version that applies generally is that the vector

of cost minimizing demands is a supergradient of the cost function at w∗, which is what our statement

requires. See, also, footnote 3.
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Overstating the importance of Shephard’s Lemma is hard. It offers a way to recapture

cost-minimizing demands. And because those input demands can be captured from c (w, y),

they inherit their properties in w from c (w, y) as we now show.

Positive homogeneity of the cost function in input prices, c (µw, y) = µc (w, y), implies

that cost-minimizing demands don’t respond to nominal price changes that leave real prices

unchanged. Let’s look at this using Shephard’s Lemma. For input prices w∗ the cost min-

imizing input demand vector, x (w∗, y), satisfies expression (1). Now suppose that we hold

x (w∗, y) constant but let input prices w∗ and wo in (1) move to µw∗ and µwo. Will x (w∗, y)

still satisfy (1)? The answer is yes because positive homogeneity of cost ensures that

c (µwo, y)− c (µw∗, y) = µ (c (wo, y)− c (w∗, y)) .

Thus,

(wo − w∗)x (w∗, y) ≥ c (wo, y)− c (w∗, y)

m

µ (wo − w∗)x (w∗, y) ≥ µ [c (wo, y)− c (w∗, y)]

m

(µwo − µw∗)x (w∗, y) ≥ c (µwo, y)− c (µw∗, y)

for µ > 0. Therefore, x (w∗, y) remains cost-minimizing for µw∗, whence

x (µw, y) = µc (w, y) µ > 0.

Cost minimizing input demands are homogeneous of degree zero in input prices, w, which is

the mathematical version of ‘only real prices matter’.

Figure 4 illustrates the consequences of real price changes for cost minimizing input

demands. The graph of c (w, y) is steeper at wo than at w∗. Applying Shephard’s Lemma

gives x (wo, y) ≥ x (w∗, y) or

(x (wo, y)− x (w∗, y)) (wo − w∗) ≤ 0. (2)

The input price and the cost minimizing demand vary inversely. Graphing x (w, y) in the

(x,w) plane gives a cost-minimizing input demand curve with a negative slope (see Figure

6).5

5Here we note a technical glitch. The mathematical convention is that the “independent” variable is
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Figure 6: Cost Minimizing Input Demand Curve
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We confirm the visual story with a simple but rigorous argument. (It holds regardless

of the dimension of x and w.) Take two cost minimizing demand bundles, x (w∗, y) and

x (wo, y), for the same output y but for different price vectors, w∗ and wo. Because they

are cost minimizing demands for y, both must belong to X (y). And although each is cost

minimizing for its respective input prices, they are not cost minimizing for the others. That

is,

w∗x (wo, y) ≥ w∗x (w∗, y)

wox (w∗, y) ≥ wox (wo, y)

Adding these inequalities together gives

w∗x (wo, y) + wox (w∗, y) ≥ wox (wo, y) + w∗x (w∗, y) ,

and collecting terms gives

(x (wo, y)− x (w∗, y)) (wo − w∗) ≤ 0,

which repeats (2) that we obtained from Figure 4.6

represented along the horizontal axis and the “dependent” variable on the vertical axis. Because we represent

demand for x as a function of w, w is the independent variable and x the dependent. Nevertheless, the

tradition in economics is to plot demand curves with price on the vertical axis and quantity on the horizontal

axis. To avoid confusion, we adhere to the economics convention.
6Expression (2) is an important special case of a more general result. Consider, three input-price vectors,

w1, w2, and w3 and their respective input demands. By the definition of a cost-minimizing demand, it must

be true that

w1x
(
w1, y

)
≤ w1x

(
w2, y

)
w2x

(
w2, y

)
≤ w2x

(
w3, y

)
w3x

(
w3, y

)
≤ w3x

(
w1, y

)
.

Adding gives

w1
(
x
(
w1, y

)
− x

(
w2, y

))
+ w2

(
x
(
w2, y

)
− x

(
w3, y

))
+ w3

(
x
(
w3, y

)
− x

(
w1, y

))
≤ 0.

And repeating the same argument for w1, w2, w3,...,wK , with K arbitrary gives

w1
(
x
(
w1, y

)
− x

(
w2, y

))
+ w2

(
x
(
w2, y

)
− x

(
w3, y

))
+ ... + wK

(
x
(
wK , y

)
− x

(
w1, y

))
≤ 0.
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Writing (2) in expanded form gives

N∑
n=1

(xn (wo, y)− xn (w∗, y)) (wo
n − w∗n) ≤ 0. (3)

Cost-minimizing input use tends to vary inversely with input prices. If only the price for

input k changes so that (wo
n − w∗n) = 0 for n 6= k expression (3) becomes

(xk (wo, y)− xk (w∗, y)) (wo
k − w∗k) ≤ 0.

The kth cost minimizing demand is nonincreasing in the kth input price. The choice of k

was arbitrary, so the result must hold for all cost minimizing demands. Cost minimizing

demands must be nonincreasing functions of their own price, where the own price for input

k is wk. As elsewhere, we use the term nonincreasing to be precise. But the intuition is that

cost minimizing demands are decreasing in their own prices and cannot slope upward. There

are no “Giffen” input demands.

How do we expect cost-minimizing input demands to respond to changes in the prices of

other inputs. Answering this question carries us beyond what our theory predicts. We can

say some things about what happens, but questions remain.

For example, we observed in Figure 5 that halving the price of input 1 led to an increase

in the use of input 1 and a decrease in the use of input 2. The demand for input 2 fell as the

price of input 1 fell. We referred to that as input 1 substituting for input 2. When there are

only two inputs (which is unrealistic in most instances), this pattern must apply under FDI.

As the real price between them changes, one input’s use must decrease while the others must

increase. So, if we look at Figure 6, and assume that the input and input price depicted in

the graph are x2 and w2, halving w1 leads to the demand curve for x2 to shift inwards. Less

of x2 is demanded at every w2 when the two inputs are substitutes after w1 falls.

From the perspective of input 2, economists call the price of input 1 a cross price and

the induced adjustment of input 2 a cross-price demand adjustment. In general, for input

k, a change in any input price, wj, with j 6= k is a cross-price change. When inputs k and j

as a consequence of cost minimization. This property of cost minimizing demands is called cyclical mono-

tonicity in w, and it along with homogeneity of degree zero exhaustively characterizes the behavior of cost

minimizing demands in w.
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have positive cross-price adjustments, they are called input substitutes. When inputs k and

j have negative cross-price adjustments, they are input complements.

The intuitive story is that input demands vary inversely with their own prices. Thus, if

its own price falls, more of the input is used. Under FDI, that suggests to keep output, y,

constant some other input’s use must fall as the producer moves along the isoquant, X̄ (y).

Those that do are the substitutes. But FDI does not require that all other inputs decrease.

A concrete example illustrates. Think of a farmer who grows and harvests corn using

different kinds of capital equipment (tractors, sprayers, combines), labor, land, fertilizers,

pesticides, and other inputs. Now suppose that the price of land falls. How would you expect

the farmer to adjust input use to keep output constant? Without empirical work, we can’t

know for sure, but it’s easy to imagine instances where the farmer would use more labor.

Land and labor would then be complements.

We close this discussion with a brief look at a canonical technology for which an input

price change causes no change in input use (also see Exercise 3). In Figure 7, the piecewise

linear curve X̄ (y)x∗X̄ (y) depicts an isoquant. If the input set for y, X (y), is everything

on or above this piecewise linear object, it satisfies nonemptiness, FDI, and convexity. But

we have drawn in two separate isocost lines, one, w∗, with a higher real price of input 1, w1

w2
,

than the other wo that generate the same x∗ as the cost minimizing choice.

Is Figure 7 realistic? Judging from observed behavior, maybe is a good answer. If you

compare Figures 5 and 7, you will note that Figure 5 suggests that producers respond to

even tiny price changes by altering their input usage. That often doesn’t happen. Producers

often make no input adjustments even for relatively large price changes. Figure 7 explains

such behavior. Some who have been seduced by drawing smooth isoquants might believe

such behavior contradicts our theory.7 Figure 7 shows that’s wrong.

7This is one area where economists’ predilection for calculus-based arguments has caused needless confu-

sion.
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Figure 7: Input Price Change Causes No Demand Change
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Properties of the cost function in y

The properties of the cost function in input prices, including Shephard’s Lemma, follow from

the type of decisionmakers we study and the environment in which they operate and not from

specific restrictions upon T (for example, FDI or convexity). Assuming that producers are

price takers means that they treat costs incurred by purchasing inputs as a linear function

of inputs. That, in turn, means that the set of input bundles costing the same amount,

what we call C̄ (c, w), is a line (hyperplane). The profit-maximization assumption implies

that producers minimize cost and seek to operate on the lowest isocost line (hyperplane)

consistent with producing y. Their optimal choice must be separated from other feasible

alternatives by a linear inequality from which the properties of c (w, y) flow.

The assumptions about the setting, however, do not determine how minimal costs vary

with output. To make those kind of predictions, we need more. We now examine how

imposing assumptions on X (y) affects the cost function’s behavior as a function of y.

Cost Function Properties in Outputs

• FDO ⇒ c (w, y′) ≥ c (w, y) , y′ ≥ y (nondecreasing in y)

• Convexity of T ⇒ c (w, λyo + (1− λ) y′) ≤ λc (w, yo) + (1− λ) c (w, y′) for λ ∈ (0, 1)

(convex in output)

• NFL⇒ c (w, y) > 0 for y ≥ 0, y 6= 0. NFC ⇒ c (w, 0) = 0.

FDO implies costs are nondecreasing in output Recall that FDO requires that input

sets get smaller as outputs expand, or said another way, they get larger as outputs decrease.

We wrote this as

FDO ⇒ X (y′) ⊂ X (y)

for y′ ≥ y. Assume, therefore, that we have identified a cost-minimizing input bundle for y′,

x (w, y′). By FDO, x (w, y′) ∈ X (y) for y′ ≥ y, the cost minimizing input demand for y′

(“doing nothing”) is a feasible response to output moving from y′ to y. Doing nothing keeps

cost constant. Therefore, a cost-minimizing producer, having this option, cannot respond

by increasing cost.

Copyright © 2024 Robert G. Chambers



Figure 8 illustrates the argument. There X̄ (y) and X̄ (y′) depict the isoquants for y and

Figure 8: FDO and Minimal Cost
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y′. The cost minimizing solution for y′ is at x (w, y′). The isoquants have been drawn so that

X (y′) is contained in X (y), x (w, y′) can produce y but is not cost minimizing. Therefore,

marginal cost is nonnegative, where marginal cost is the cost-analogue of marginal product.

In the single-output case, it’s the change in cost divided by a change in output. So for

‘tiny’ output changes, it’s c (w, y)’s slope in the (y, c) plane. In the multiple-output case, the

marginal costs of the different outputs at, for example, y∗ are given by the elements of the

normal to the hyperplane tangent to the graph of c (w, y) at (y∗, c (w, y∗)).
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Convexity implies the cost function is convex in output You will recall from Lecture

3 that a convex T ensures that the input-requirement function, e (y), is convex as a function

of y. (See Figure 2, Lecture 3.) The cost function is the money-metric generalization of the

input-requirement function, it, too, is convex as a function of y for convex T .

Marginal cost curves graphed in (y, $) space for a cost function convex in y have a positive

slope that rises as output rises. (Exercise 5 asks you to explain why this is true and to draw

the appropriate pictures.) This is viewed as the normal state of affairs and many (but not

all) visual depictions of marginal cost are drawn this way.8

We use a familiar strategy to show this result. Take minimizing input bundles for two

arbitrary outputs bundles, yo and y′, and denote them as x (w, yo) and x (w, y′). T a convex

set requires that any weighted average of these bundles,

λx (w, yo) + (1− λ)x (w, y′) ,

can produce the corresponding weighted average of yo and y′, λyo + (1− λ) y′. But that

means its associated cost is at least as large as minimal cost,

c (w, λyo + (1− λ) y′) ≤ w (λx (w, yo) + (1− λ)x (w, y′)) .

Bringing w inside the parentheses on the right-hand side of this expression and using the

definition of cost-minimizing demands gives

c (w, λyo + (1− λ) y′) ≤ λc (w, yo) + (1− λ) c (w, y′) for λ ∈ (0, 1) ,

as desired.

No Free Lunch and No Fixed Costs The names of these properties evoke their con-

sequences for c (w, y). NFL means what it says, you can’t get something for nothing. To

produce a positive output, you must incur a positive cost. It is a direct consequence of

requiring a positive input to produce a positive output. NFC, on the other hand, means

that the producer need not incur a cost to produce nothing because inaction is possible.

8Some graphical illustrations will have negatively sloped marginal costs for low output levels, but they

eventually turn upwards.
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A brief comment on the notion of fixed cost is appropriate. The cost function, c (w, y),

treats y as fixed. Thus, it is a short-run concept. But, all inputs, x, remain variable. No

fixed costs (NFC) signals that when all inputs are variable, the producer can use a zero input

vector to produce nothing. This contrasts with situations where the producer is obligated,

either by contractual or other means, to purchase a fixed input bundle regardless of the

amount produced. In that case, fixed costs are present, NFC does not apply, and we cannot

show that c (w, 0) = 0.

Figure 9 depicts the cost function for a canonical technology in the two-output case. It

emanates from the origin and is nondecreasing and convex in y.

Figure 9: Cost Function for a Canonical Technology
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Cost Minimizing Input Demand and Outputs We close this lecture by examining

how cost-minimizing demands respond to changes in output, y. General results are scarce.

Input demands can respond in different ways to output changes. Sometimes increasing the

production of an output means increasing the use of an input while decreasing the use of

others. Or it can mean increasing all inputs. Much depends on the setting and the applied

circumstances.

Faced with such analytic ambiguity, economists settle for a taxonomy of input behavior.

If input k is an increasing function of output m, input k is progressive in output m. If input

k is a decreasing function of output m, input k is regressive in output m. In Figure 6, if the

input depicted is progressive in output m, an increase in output m leads that demand curve

to shift to the right. Conversely, if it is regressive, it shifts to the left.
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Exercises

1. Figure 10 depicts an isoquant for a noncanonical technology. Isolate all the points that

could be cost minimizing for some combination of strictly positive input prices. Explain your

answer.

Figure 10: Noncanonical Isoquant
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2. Using Figure 4, explain why the producer’s best response to price rising from w∗ to ŵ

must involve a minimal cost that satisfies ŵx∗ ≥ c (ŵ, y).

3. Figure 11, which is borrowed from Lecture 4, depicts an isoquant for a canonical technol-

ogy. Describe how the cost minimizing demands for both inputs change as the real price of

input 1, w1

w2
, varies over the interval 0 < w1

w2
<∞. Illustrate in the (x1, w1) plane the demand

curve for input 1 that results when w2 = 1.
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Figure 11: Deriving Input Demands
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4. Show that cyclical monotonicity of c (w, y) in w (see footnote 5),

w1
(
x
(
w1, y

)
− x

(
w2, y

))
+w2

(
x
(
w2, y

)
− x

(
w3, y

))
+ ...+wK

(
x
(
wK , y

)
− x

(
w1, y

))
≤ 0

implies that

(wo
k − w′k) (xk (wo, y)− xk (w′, y)) ≤ 0

if wo
j = w′j for j 6= k.

5. Explain why convexity of T ensures that marginal cost is a nondecreasing function of

output and illustrate it with a picture.

6. Two chicken farmers use the same production process (that is, they both face the same

technology) that employs chicken feed and hired labor to produce chickens. The farmers live

in different states (Arkansas and Maryland) and therefore face different input and output

prices, but it turns out for contractual reasons that they both want to produce the same

number of chickens. The price of chicken feed in Arkansas is $2.00 a pound while the price

of hired labor is $5.00 an hour. In Maryland, the high-cost state, the price of chicken feed

is $4.00 a pound while the price of hired labor is $10.00 per hour. Decide which region

has higher cost, which region employs the most labor, and which region employs the most

chicken feed. Explain all of your answers.

7∗. The isocost set (as distinct from the isocost line) is defined as the set of outputs that

give a level of cost no greater than c for input prices w. Its mathematical definition is

Y ∗ (c, w) ≡ {y : c (w, y) ≤ c}

Draw a picture in (y1, y2) space illustrating Y ∗ (c, w) for a two-output canonical technology.

8∗ Prove that if T is a convex set, Y ∗ (c, w) is a convex set.

9∗. Prove that Y ∗ (c, w) being a convex set does not imply that T is convex.
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Lecture Introduction

This lecture’s subject is the revenue function defined in Lecture 5. It is the money-metric gen-

eralization of the single-output production function that solves the problem of adding unlike

output quantities by converting them into value terms. The analytic approach echoes that

used in Lectures 5 and 6. Now, however, we seek the highest isorevenue line (hyperplane),

R̄ (r, p), consistent with a given output set, Y (x). As Figure 1 illustrates, the revenue max-

imizing solution, denoted by y (p, x), occurs where an isorevenue line (hyperplane) supports

the output set from above, so that

R̄ (py (p, x) , p) ∩ Y (x) 6= ∅ and (1)

Y (x) ⊂ R− (py (p, x) , x) (2)

characterizes the solution.

Lecture 6 showed that the behavior of the cost function as a function of input prices only

depends upon a mild restriction on the technology. Moreover, the properties of c (w, y) in

w characterize the behavior of cost-minimizing behavior input demands in w. The parallel

result for the revenue function is that its behavior as a function of output prices only requires

a mild (but slightly stronger) restriction upon the technology and that it characterizes the

behavior of revenue maximizing supplies in output prices.

We proceed as follows. First, we examine the properties of the revenue function in output

prices. Then we examine the consequences of FDI, convexity, NFC, and NFL for R (p, x).

Because the argument parallels those Lectures 5 and 6, we adopt a terser style to avoid

repeating basic principles. Those readers who are just “dropping in” to this lecture may

benefit from reviewing Lectures 5 and 6.

The Revenue Function Defined and its Properties in

Output Prices

Definition 1. The revenue function, R (p, x), for output prices p and input bundle x is the

maximal revenue that can be realized from the output set for x, Y (x).
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Figure 1: Revenue Maximization
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We recall Chapter 5’s mathematical definition of R (p, x).1

R (p, x) ≡ max
y
{py : (x, y) ∈ T}

= max
y
{px : y ∈ Y (x)} .

The revenue function is well defined if the output set is nonempty, Y (x) 6= ∅, and “bounded”.2

We first state mathematical versions of R (p, x)’s properties and then follow with a discussion

of each.

The Revenue Function as a Function of Output Prices

• R (p, x) ≥ 0 (nonnegative)

• R (p′, x) ≥ R (p, x) for p′ ≥ p (nondecreasing in p)

• R (µp, x) = µR (p, x) for µ > 0 (positively homogeneous in p)

• R (λpo + (1− λ) p∗, x) ≤ λR (po, x) + (1− λ)R (p∗, x) λ ∈ (0, 1) (convex in p)

Nonnegative The revenue function is nonnegative because outputs, y, are nonnegative

and output prices are positive. Hence, revenue as their product cannot be negative.

Nondecreasing in p Let y∗ be revenue maximizing for p. Because Y (x) does not depend

upon p, y∗ remains producible for p′ ≥ p. But p′ ≥ p implies that the revenue for the

“do-nothing” response satisfies

p′y∗ ≥ py∗ = R (p, x) ,

so that R (p′, x) ≥ R (p, x). When depicted in (p, r) space, the graph of R (p, x) has a

nonnegative slope.

1The mathematical name of the revenue function is the (upper) support function for Y (x).
2Boundedness is a technical requirement that ensures that there are no infinitely large feasible output

bundles.
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Positively homogeneous in p Inspecting Figure 1 while recalling that the isorevenue

line’s slope only depends upon real prices implies that a nominal price change leaves that

solution unchanged. Once again, ‘only real prices matter’ is the core principle. Producers

respond to real but not nominal price changes. The mathematical argument follows the same

method used to demonstrate the positive homogeneity of c (w, y) in w.

R (µp, x) = max
y
{µpy : y ∈ Y (x)}

= µmax
y
{py : y ∈ Y (x)}

= µR (p, x)

for µ > 0. Here the key idea is that making µpy as large as possible reduces to making py

as large as possible if we hold µ fixed. Thus, if y∗, for example, solves

max
y
{py : y ∈ Y (x)} ,

it must also solve

max
y
{µpy : y ∈ Y (x)} .

Convex in p A nondecreasing, convex function is visualized as one that has a positive

and increasing slope. Figure 2 illustrates. To show the reasoning: pick an arbitrary output-

price vector, p∗, in Figure 2 and label its revenue maximizing output bundle y∗, so that

R (p∗, x) = p∗y∗. Let the output price rise to po > p∗. (Exercise 2 asks you to developed the

associated geometric argument.3) How do you illustrate the associated change in revenue if

the producer keeps production at y∗? Is that a feasible response? How does it compare to an

optimal response? Answering these questions confirms that the convex shape in Figure 2 is

not only possible, but expected, if producers can adjust (transform) their output production

in response to changes in p.

For a more formal argument, let

p̂ ≡ λpo + (1− λ) p∗

3You may wish to consult Figures 3 and 4 and the surrounding discussion in Chapter 6 in fleshing out

the elaboration.
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Figure 2: Convex Revenue Function
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for λ ∈ (0, 1) and ŷ ∈ Y (x) denote a revenue maximizing solution for p̂. By definition

poŷ ≤ R (po, x)

p∗ŷ ≤ R (p∗, x) .

Multiplying the first by λ, the second by 1− λ, adding, and rerranging gives

R (λpo + (1− λ) p∗, x) ≤ λR (po, x) + (1− λ)R (p∗, x) ,

for λ ∈ (0, 1) as desired because

R (λpo + (1− λ) p∗, x) = (λpo + (1− λ) p∗) ŷ.

Revenue Maximizing Supplies

Definition 2. A revenue maximizing supply vector, y (p, x), for prices p and input bundle

x is any solution to the revenue maximization problem for p and x.

In mathematical form, that definition becomes

y (p, x) ∈ argmax
y
{py : y ∈ Y (x)} .

Our investigation of y (p, x)’s behavior starts with noting that each such supply vector,

y (p∗, x), defines a linear function of output prices p, py (p∗, x) ≡
∑M

m=1 pmym (p∗, x), that

satisfies

poy (p∗, x) ≤ R (po, x)

and

p∗y (p∗, x) = R (p∗, x) ,

for all p∗ and po. Rephrased in geometric terms: the linear function of po, poy (p∗, x), with

normal y (p∗, x) defines a lower bound for the revenue function, R (po, x), that equals it when

po = p∗. Subtracting the equality from the inequality gives:

(po − p∗) y (p∗, x) ≤ R (po, x)−R (p∗, x) , (3)

for all po as a requirement for y (p, x) to be revenue-maximizing.4 Figure 3 illustrates. The

graph of the linear function, py (p∗, x), is illustrated by the line segment passing through
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Figure 3: McFadden’s Lemma
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(p∗, p∗y∗) and (po, poy∗), where now y∗ = y (p∗, x) . The economic implication is that the

“do-nothing” response of keeping output at y∗ = y (p∗, x) as output price changes from p∗ to

po never generates more revenue than the optimal response. Expression (3) is the analogue

of Shephard’s Lemma for the revenue function.

McFadden’s Lemma For all p∗ and x, any solution to the revenue-maximization problem,

y (p∗, x) must be the normal for a hyperplane tangent to the graph of R (p, x) at

(p∗, R (p∗, x)).5

McFadden’s Lemma links revenue-maximizing supplies, y (p, x), to the slope of the rev-

enue function in p. That implies that the behavior of R (p, x) in p will characterize the

behavior of y (p, x). For example, we have argued that the revenue-function is positively ho-

mogeneous in p, or that ‘only real price matters’ in determining revenue-maximizing supplies.

Let’s confirm that argument using McFadden’s Lemma and the properties of R (p, x).

Following an argument developed in Chapter 6, we note that if y (p∗, x) satisfies expression

(3), positive homogeneity of R (p, x) in p ensures that it also satisfies

(µpo − µp∗) y (p∗, x) ≤ R (µpo, x)−R (µp∗, x) (4)

for all µpo and µp∗ because positive homogeneity allows expression (4) to be rewritten as

µ (po − p∗) y (p∗, x) ≤ µ (R (po, x)−R (p∗, x)) .

And dividing both sides by µ > 0 gives expression (3). Thus, expressions (3) and (4) are

equivalent. Applying McFadden’s Lemma we conclude, therefore, that

y (µp, x) = y (p, x) for µ > 0.

Revenue maximizing supplies are homogeneous of degree zero in p, and nominal prices changes

do not affect them.

Figure 1 suggests that increasing the price of output 1, p1, makes the slope of the isorev-

enue line steeper (from the perspective of the vertical axis). That suggests that the producer

4Expression (3) says that the revenue maximizing supply vector is a subgradient of R (p, x) at p∗.
5Alternatively: Any solution to the revenue-maximization problem at (p∗, x) must be a subgradient for

R (p, x) at R (p∗, x).
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responds to an increase in p1 by moving along the transformation curve to a point where

more of output 1 is produced and less of output 2. Similarly, Figure 3 shows that the slope

of R (p, x) is steeper at po than at p∗, which when coupled with McFadden’s Lemma also

suggests that output responds positively to an increased price.

We confirm these intuitive arguments by using the two inequalities

poy (p∗, x) ≤ poy (po, x)

p∗y (po, x) ≤ p∗y (p∗, x)

that are a necessary consequence of revenue maximization for all po and p∗. (They say that

revenue maximizing supplies generate more revenue at the prices for which they are revenue

maximizing than revenue maximizing supplies for other prices.) Adding them together and

rearranging gives6

(po − p∗) (y (po, x)− y (p∗, x)) ≥ 0, (5)

or in expanded form

M∑
m=1

(pom − p∗m) (ym (po, x)− ym (p∗, x)) ≥ 0.

Revenue maximizing supplies and output-prices tend to vary together. Taking pok = p∗k for

all k 6= j gives (
poj − p∗j

)
(yj (po, x)− yj (p∗, x)) ≥ 0,

which confirms that all revenue-maximizing supplies are upward sloping (more precisely not

downward sloping) in their own prices. Figure 4 illustrates.

From the discussion of Figure 1, we anticipate that an increase in the price of one output

tends to suppress production of other commodities. Using a bit more jargon, we might

therefore conclude that cross price adjustments of revenue maximizing supplies tend to be

6Following the line of argument in footnote 5 of Lecture 6, we can show that expression (5) is a special

case of revenue-maximizing supplies satisfying the following cyclical monotonicity property in p:

p1
(
y
(
p1, x

)
− y

(
p2, x

))
+ p2

(
y
(
p2, x

)
− y

(
p3, x

))
+ ... + pK

(
y
(
pK , x

)
− y

(
p1, x

))
≥ 0.

Together with zero homogeneity, cyclical monotonicity exhaustively characterizes the behavior of revenue

maximizing supplies in p.
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Figure 4: Revenue Maximizing Supply
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negative (more precisely nonpositive). If FDO applies, and there are only two outputs, this

is indeed true. More generally, it’s not.

Consider, for example, a farmer who produces wheat and beef for the local market.

Because a necessary by-product of beef production is hide production (which can be used

in leather production), one expects that an increase in the price of beef would lead to an

increase in hide production even if the price of hides remained constant. In fact, one would

not be surprised if an increase in the price of beef led to an increase in hide production even

if the price of hides fell. Such things can and do happen.

Outputs whose supply increases as cross price pk increases are complements for output

k. Substitutes for k are outputs whose supply decreases as pk falls. Referring to Figure 4, let

the supply illustrated there be for output m 6= k so that the price illustrated on the vertical

axis will be pm. If output m is a substitute for output k, an increase in pk will cause the

demand curve to shift to the left so that less of output m is supplied at all levels of pm. On

the other hand, if output m is a complement for output k, an increase in pk will cause the

supply curve for output m to shift to the right at the production of m increases with the

production of k.

Revenue Function as a Function of Inputs, x

How R (p, x) responds to changes in x depends upon Y (x). Because R (p, x) is the money-

metric generalization of the production function, f (x), that accommodates multiple outputs

(for the single-output case R (p, x) = pf (x)), its behavior in x has natural parallels in the

behavior of f (x). We first list the implications for R (p, x) of restrictions imposed on Y (x)

and then discuss them.

Properties of R (p, x) in x

• FDI ⇒ R (p, x′) ≥ R (p, x) for x′ ≥ x (nondecreasing in x)

• Convexity of T ⇒ R (p, λxo + (1− λ)x∗) ≥ λR (p, xo)+(1− λ)R (p, x∗) for λ ∈ (0, 1)

(concave in input)
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• NFL and NFC ⇒ R (p, 0) = 0.

Nondecreasing in x Free disposability of inputs ensures that maximal revenue cannot

decrease as a result of an increase in the input bundle, x. The demonstration follows the

“do nothing” principle. Because y (p, x) ∈ Y (x), FDI ensures that it also belongs to Y (x′)

for x′ ≥ x. Therefore, the producer can respond to an input increase by producing the same

output bundle. And because that choice results in no revenue change, the best response

cannot decrease revenue.

When R (p, x) is graphed as a function of x, nondecreasing in x rules out a negatively

sloped curve. The parallel property for the production function was called a positive (non-

negative) marginal productivity. Here the parallel concept is marginal revenue. If there is

only a single input, marginal revenue is defined as change in revenue divided by the change

in the input, ∆R(p,x)
∆x

, or as the slope of the line segment tangent to the graph of R (p, x)

at (x,R (p, x)). In the multiple input case, the marginal revenues form the normal to the

hyperplane tangent to R (p, x) at (x,R (p, x)). They are all nonnegative under FDI.

Concavity as a function of x Concavity of R (p, x) as a function of x echoes the concavity

of the production function. It manifest the principle of diminishing returns and implies that

successive marginal input increases evoke decreasing (more precisely nonincreasing) marginal

revenue increases. In more casual terms, convexity of T implies decreasing marginal revenue

for each of the inputs. This evokes a revenue function with the same basic shape as the

production function presented in Figure 1 of Lecture 3. The only change is that the vertical

axis is denominated in nominal value (dollar) terms rather than in terms of output.

The more formal demonstration follows a now well-trod path. For xo and x∗ find y (p, xo)

and y (p, x∗). Convexity of T ensures that λy (p, xo)+(1− λ) y (p, x∗) ∈ Y (λxo + (1− λ)x∗)

for λ ∈ (0, 1) . But that requires that

R (p, λxo + (1− λ)x∗) ≥ p (λy (p, xo) + (1− λ) y (p, x∗)) ,

and the desired conclusion follows immediately from the definition of y (p, x) as revenue

maximizing.
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NFL and NFC No free lunch ensures that a positive amount of any output cannot be

produced by a zero input bundle. No fixed cost, on the other hand, means that 0 is a feasible

output choice for a 0 input. Together, they imply that R (p, 0) = 0.

Revenue Maximizing Supply and Input Use As a general principle, we expect an

increase in the application of inputs to lead producers to increase their outputs. But it is also

easy to imagine instances where increasing some inputs will cause certain revenue maximizing

outputs to increase and others to decrease. Let’s consider a farmer producing a livestock

output and a crop output from a bundle of inputs that consists of land, fertilizer, livestock

feed, and labor. If livestock feed increases, one might envision the farmer diverting some

labor from crop production to increased feed handling and distribution. The result would

be increased livestock production but decreased crop production. Similarly, an increase

in fertilizer availability might prompt the farmer to divert labor from livestock to crop-

production activities.

If increasing input k is associated with a increase in the revenue maximizing amount of

output m, output m is normal or progressive in input k. If increasing input k is associated

with a decrease in the revenue maximizing amount of output m, output m is regressive in

input k. If output m is normal in input k, an increase in input k causes the supply curve for

output m to shift to the right, leading to more output supplied for all levels of pm. If output

m is regressive in input k, the same change in xk causes the supply curve to shift to the left.

Copyright © 2024 Robert G. Chambers



Exercises

1. Figure 5 depicts an output set for a technology. As p1
p2

varies over the interval 0 < p1
p2
<∞,

identify the revenue-maximizing supplies for both outputs. Graph the resulting revenue-

maximizing supply for output 2 in (y2, p2) space.

Figure 5: Solving the revenue maximization problem
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2. Develop a geometric illustration of the demonstration that R (p, x) is convex in p.

3. Develop a geometric illustration of a revenue function in (x, r) space for a canonical

technology with two outputs and one input.

4. Consider a farmer who is producing both corn and wheat using two inputs, fertilizer and

land. Also assume that the farmer has a given amount of fertilizer and land is trying to

make as much profit from them as possible. The price of corn is initially $4/bushel and the
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price of wheat is initially $7/bushel. Explain how the farmer decides how much wheat to

produce and how much corn to produce. What happens to the supply of wheat, the supply

of corn, and your revenue if the price of wheat fell from $7 to $5.

5.* Consider three output-price vectors, p1, p2, and p3 and their respective revenue-maximizing

supplies. By the definitions of the revenue function and revenue-maximizing supplies:

p1y
(
p1, x

)
≥ p1y

(
p2, x

)
p2y
(
p2, x

)
≥ p2y

(
p3, x

)
p3y
(
p3, x

)
≥ p3y

(
p1, x

)
.

Adding these three expressions together and rearranging gives

p1
(
y
(
p1, x

)
− y

(
p2, x

))
+ p2

(
y
(
p2, x

)
− y

(
p3, x

))
+ p3

(
y
(
p3, x

)
− y

(
p1, x

))
≥ 0.

Show that this last expression implies

(
p1 − p3

) (
y
(
p1, x

)
− y

(
p3, x

))
≥ 0,

and explain its economic meaning intuitively.
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Lecture Introduction

We introduced the profit function, π (p, w), in Chapter 5 and discussed it for the single-input,

single-output technology. This lecture examines it and its associated profit maximizing sup-

plies and input demands for general technologies. The analytic principles remain unchanged,

the producer seeks a point where an isoprofit line (hyperplane) supports T from above. Thus,

the intuitive arguments and visual illustrations often parallel ones used in discussing c (w, y)

and R (p, x). That often makes for a terser argument than adopted in Chapters 5-7.

We start the chapter by discussing some nuances associated with using a maximal value

function to characterize producer behavior that are easy to overlook. Then we turn to an

examination of the properties of the profit function defined in terms of the technology, T :

π (p, w) ≡ max
x,y
{py : (x, y) ∈ T} ,

and we close the Lecture by discussing the two-stage versions of the profit maximization

problem:

π (p, w) ≡ max
x
{R (p, x)− wx}

and

π (p, w) ≡ max
y
{py − c (w, y)} .

Maxima and Behavior

Figure 1 depicts T as everything on or below the ray from the origin labelled 0Y. You should

verify that this representation corresponds to a canonical technology. But it’s important to

note that the linear nature of T ′s upper bound also ensures that T satisfies:1

• Constant Returns to Scale (x, y) ∈ T ⇒ (µx, µy) µ > 0.

Suppose that a producer finds a profitable (x, y) bundle. Can the producer produce 2 (x, y)

and double profits, 3 (x, y) and triple profits, and so on? The answer is yes for a constant-

returns-to-scale (more simply, constant-returns) T .

1A constant-returns-to-scale technology set, T is a special case of a mathematical object called a cone.

For that reason, some writers refer to constant-returns-to-scale technologies as being conical. By definition,

K ⊂ RJ is a cone if k ∈ K ⇒ λk ∈ K for all λ > 0.
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Figure 1: Constant Returns Technology
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Interpreting the profit function and the profit maximizing solution for a constant-returns

technology is subtle.2 Figure 2 superimposes an isoprofit line, P̄ (π, p, w), on the technology

in Figure 1. Any point on P̄ (π, p, w) that lies inside T is technically feasible and yields a

profit of π > 0. (Note the vertical intercept of the isoprofit line is positive.) For example, take

the point labelled (x∗, y∗). Because the technology satisfies constant returns, (µx∗, µy∗) ∈ T

Figure 2: Infinite Profit and Constant Returns
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even as µ becomes infinitely large. But if π = py∗ − wx∗ > 0, µπ = pµy∗ − wµx∗ goes to

infinity as µ is made arbitrarily large. Therefore, if π > 0 is available for a constant returns

2Our discussion, which focuses on producer decisions, rarely treats issues associated with economies of

scale or economies of scope. However, these matters assume central importance in studying the nature of

competitive equilibrium with free entry and exit of both producers and consumers. And there constant-

returns technologies represent an important benchmark in studying firm behavior.

Copyright © 2024 Robert G. Chambers



to scale technology, so too is an infinite profit and π (p, w) =∞.3

On the other hand, if input and output prices are such that the isocost line, P̄ (π, p, w), is

more steeply sloped (not drawn) than 0Y, maximal profit occurs at the origin (see Exercise

1). In this case, firms do not operate and profit is zero. Zero profit also occurs, regardless

of how much is produced, in the knife-edge case where relative prices define isoprofit lines

having the same slope as the boundary of the constant-returns T. Thus, for the constant

returns technology, π (p, w) always assumes one of two bounding values either 0 or ∞. 4

In figure 3, the technology set is depicted as everything on or below the curve AY. This

T violates no fixed cost, NFC. Nevertheless, profit is maximized where an isoprofit line,

P̄ (π, p, w), supports T from above. As drawn, however, π
p
< 0, maximal profit is negative

for the relative price that defines the slope of P̄ (π, p, w).

Is it plausible to believe that a producer would tolerate a negative profit? We introduced

the technology, T , as a constraint on production choices. But we have not discussed what

causes a decisionmaker to be a producer. Is the decisionmaker free to pursue alternative

employment? In a free-market setting, the answer is presumably yes. And decisionmakers

are free to choose between acting as producers and earning π (p, w) or pursuing alternative

employment. Economists call the best-possible remuneration from alternative employment

the decisionmaker’s opportunity cost of being a producer. To keep things simple, suppose

that the opportunity cost is 0. Then the decisionmaker’s employment choice is driven by

max {0, π (p, w)} ,

where 0 > π (p, w) signals that the decisionmaker is better off pursuing alternative employ-

ment. Figure 3 depicts such a case.

3Infinity is not a real number, so what this means is that profit has an infinite limit in such cases. In any

case, the intuition is apparent. Constant returns allows producers to make unbounded profits. Hence, it’s

hard to believe that technologies exist for which constant returns applies globally.
4Why market prices should fall in any of these regions is precisely the “stuff” of competitive market

analysis and lies beyond the scope of our discussion.
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Figure 3: Should the Decisionmake be a Producer?
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Properties of the Profit Function

Definition 1. The profit function, π (p, w), gives the maximal feasible profit at output prices

p and input prices w.

The mathematical definition is:5

π (p, w) ≡ max
x,y
{py − wx : (x, y) ∈ T} .

We state π (p, w)’s properties and then discuss them.

Properties of the Profit Function

• p′ ≥ p ⇒ π (p′, w) ≥ π (p, w) and w′ ≥ w ⇒ π (p, w′) ≤ π (p, w) (nondecreasing in p

and nonincreasing in w)

• π (µp, µw) = µπ (p, w) µ > 0 (positively homogeneous)

• π (λpo + (1− λ) p∗, λwo + (1− λ)w∗) ≤ λπ (po, wo) + (1− λ) π (p∗, w∗) λ ∈ (0, 1)

(convex)

Nondecreasing in p and nonincreasing in w Let (x∗, y∗) be profit maximizing for

(p, w). By responding to a price rise of p to p′ by “doing nothing”’, the producer realizes a

profit of

p′y∗ − wx∗ ≥ py∗ − wx∗ = π (p, w) .

The producer’s “best response” to the price change necessarily dominates the “do-nothing

response”. Hence, π (p′, w) ≥ π (p, w) for p′ ≥ p. By responding to an input price decrease

from w′ to w by “doing nothing” the producer realizes a profit of

py∗ − wx∗ ≥ py∗ − w′x∗ = π (p, w′) .

The producer’s “best response” necessarily dominates the “do-nothing” response, whence

π (p, w′) ≤ π (p, w) for w′ ≥ w.

When graphed in the (p, π) plane, π (p, w) has a nonnegative slope and when graphed in

the (w, π) plane a nonpositive slope.

5The math literature refers to π (p, w) as a support function for the set T in terms of (p,−w).
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Positively homogeneous in prices The underlying principle is that “only real prices

matter”. Visually, the principle is captured by remembering that nominal price changes do

not affect an isoprofit line’s slope, P̄ (π, p, w). (See Lecture 5, Figure 3). Hence, where an

isoprofit line (hyperplane) supports T is not affected by nominal price changes.

The formal demonstration follows the same line of argument used in discussing c (w, y)

and R (p, x):

π (µp, µw) = max
x,y
{µpy − µwx : (x, y) ∈ T}

= max
x,y
{µ (py − wx) : (x, y) ∈ T}

= µmax
x,y
{py − wx : (x, y) ∈ T}

= µπ (p, w) µ > 0.

Convex in prices Let (x∗, y∗) be profit maximizing for (p, w). If prices change to (po, wo),

the “do-nothing” profit change is

(po − p) y∗ − (wo − w)x∗,

which defines a linear function of the price changes (po − p) and (wo − w). By definition, the

producer’s best response must at least weakly dominate this “do-nothing”response. Thus,

the best-response profits change must “better than linear”.

Figure 4 depicts a “better than linear” response for an input-price increase. (Exercise 2

asks you to develop the analogous figures for an output price change.) If the input price rises

to wo from w, and the producer stays at (x∗, y∗), profit falls as costs increase from wx∗ to

wox∗. The negatively sloped line segment connecting (w, py∗ − wx∗) and (wo, py∗ − wox∗)

illustrates. (The slope of the line segment is −x∗.) The producer’s best response must at

least weakly dominate the “do-nothing” response, suggesting that π (p, w) falls less than

(wo − w)x∗.

The formal demonstration that π (p, w) is convex in prices also follows a familiar path.

We need to compare π (po, wo), π (p∗, w∗), and π (λpo + (1− λ) p∗, λwo + (1− λ)w∗). Let

(x̂, ŷ) ∈ T solve the profit maximization problem for λpo + (1− λ) p∗ and λwo + (1− λ)w∗,

so that

π (λpo + (1− λ) p∗, λwo + (1− λ)w∗) = (λpo + (1− λ) p∗) ŷ − (λwo + (1− λ)w∗) x̂. (1)

Copyright © 2024 Robert G. Chambers



Figure 4: Profit Function Convex in Input Prices
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The definition of π (p, w) ensures that

poŷ − wox̂ ≤ π (po, wo)

p∗ŷ − w∗x̂ ≤ π (p∗, w∗) .

That is, the profit from producing (x̂, ŷ) when prices are (po, wo) and (p∗, w∗), respectively,

cannot exceed maximal profit at those prices. Multiplying the first inequality by λ > 0, the

second inequality by 1− λ > 0, and adding gives

(λpo + (1− λ) p∗) ŷ − (λwo + (1− λ)w∗) x̂ ≤ λπ (po, wo) + (1− λ) π (p∗, w∗) .

We can now rely on expression (1) to replace the left-hand side of this expression to get

π (λpo + (1− λ) p∗, λwo + (1− λ)w∗) ≤ λπ (po, wo) + (1− λ) π (p∗, w∗) λ ∈ (0, 1) ,

which establishes the desired convexity property.

Profit Maximizing Output Supply and Input Demand

We now study the role that the properties of π (p, w) play in determining optimal producer

behavior. Our starting point is a verbal definition of profit-maximizing input demands and

output supply.

Definition 2. Any solution, (x∗ (p, w) , y∗ (p, w)), to the profit maximization problem is a

profit maximizing input demand and output supply bundle.

In mathematical terms,

(x∗ (p, w) , y∗ (p, w)) ∈ argmax
x,y

{py − wx : (x, y) ∈ T} .

Here argmaxx,y {·} selects the input and output bundles that give the maximal value in the

set {·}.6 In Chapters 6 and 7, we learned that optimal solutions to the cost-minimization

and revenue-maximization problems are normals for hyperplanes tangent to the graphs of

6We intentionally say bundles rather than bundle here because in appropriate circumstances, more than

one input-output configuration can achieve the same maximal profit for given (p, w).
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c (w, y) and R (p, x), respectively. A bit more informally, cost-minimizing demands are given

by the slopes of c (w, y) in w and revenue-maximizing supplies by the slopes of R (p, x) in

p. Figure 4, which shows that a line segment with slope −x∗ (p, w) supports the graph of

π (p, w) from below in (w, π) space, suggests a similar phenomenon applies to the profit

function, π (p, w). (Exercise 3 asks you to to develop and illustrate the analogous property

in the output price.) The general result is:7

Hotelling’s Lemma For all p∗ and w∗, (−x∗ (p∗, w∗) , y∗ (p∗, w∗)) is the normal for a hy-

perplane tangent to the graph of π (p, w) at (w∗, p∗, π (p∗, w∗)).

We establish Hotelling’s Lemma using arguments that parallel those used for Shephard’s

Lemma and McFadden’s Lemma. Because (x∗ (p∗, w∗) , y∗ (p∗, w∗)) ∈ T, the definition of

π (p, w) requires that

py∗ (p∗, w∗)− wx∗ (p∗, w∗) ≤ π (p, w)

for all (p, w) and (p∗, w∗) , and

p∗y∗ (p∗, w∗)− w∗x∗ (p∗, w∗) = π (p∗, w∗) .

That is, maximal profit for (p, w) is always greater than or equal to profit available from

(x∗ (p∗, w∗) , y∗ (p∗, w∗)) at (p, w) and equal to it when (p, w) = (p∗, w∗). Subtracting the

equality from the inequality gives,

(p− p∗) y∗ (p∗, w∗)− (w − w∗)x∗ (p∗, w∗) ≤ π (p, w)− π (p∗, w∗) , (2)

for all (p, w) as a condition that must hold at the profit-maximizing solution.8 Expression (2)

reiterates that doing nothing is dominated profit-wise by the optimal response. Its geometric

manifestation is that a hyperplane with normal (−x∗ (p∗, w∗) , y∗ (p∗, w∗)) must support the

graph of π (p, w) from below at (w∗, p∗, π (p∗, w∗)).

7Hotelling’s Lemma is often phrased in terms of gradients of the profit function. As with Shephard’s

Lemma, the gradient version requires imposing further structure upon T . Our statement applies for the

general case.
8An input-output bundle, (−x∗ (p∗, w∗) , y∗ (p∗, w∗)), satisfying expression (2) is called a subgradient for

the profit function at (w∗, p∗).
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“Only real prices matter” in determining cost-minimizing demands and revenue-maximizing

supplies. A parallel result applies for profit-maximizing input demands and output supplies.

To show this property, we use the positive homogeneity property of the profit function.

Multiplying both sides of expression (2) by µ > 0 gives

(µp− µp∗) y∗ (p∗, w∗)− (µw − µw∗)x∗ (p∗, w∗) ≤ µ (π (p, w)− π (p∗, w∗)) .

By invoking positive homogeneity of π (p, w), we can rewrite the right-hand side of this

expression as π (µp, µw)− π (µp∗, µw∗). Making that substitution, we conclude that

(µp− µp∗) y∗ (p∗, w∗)− (µw − µw∗)x∗ (p∗, w∗) ≤ π (µp, µw)− π (µp∗, µw∗)

for all (p, w, p∗, w∗) and µ > 0. So, if (2) is satisfied by (x∗ (p∗, w∗) , y∗ (p∗, w∗)), it will remain

satisfied for all nominal changes of (p, w) and (p∗, w∗). “Only real prices matter” to profit

maximizers and

• (x∗ (µp, µw) , y∗ (µp, µw)) = (x∗ (p, w) , y∗ (p, w)) for µ > 0,

optimal supply and input demand bundles are homogeneous of degree zero in (p, w).

Having concluded that nominal price changes do not cause profit-maximizing producers

to adjust their inputs and outputs, it’s natural to wonder how they respond to real or

relative price changes. Shephard’s Lemma, when coupled with concavity of c (w, y) in w,

taught us that cost-minimizing producers respond to an increase in the price of an input

by decreasing use of that input. McFadden’s Lemma and convexity of R (p, x) in p taught

us that revenue-maximizing producers react to an increase in pm by increasing their supply

of ym. You are asked in Exercise 4 to draw similar lessons from the convexity of π (p, w)

and Hotelling’s Lemma, while we restrict ourselves to an analysis that only requires a “do-

nothing” argument, addition, and a tiny bit of algebra.

Because profit maximizing input and output bundles belong to T ,

poy∗ (po, wo)− wox∗ (po, wo) ≥ poy∗ (p̂, ŵ)− wox∗ (p̂, ŵ) , and

p̂y∗ (p̂, ŵ)− p̂x∗ (p̂, ŵ) ≥ p̂y∗ (po, wo)− ŵx∗ (po, wo) ,

for all (po, wo) and (p̂, ŵ). The left-hand side of these expressions is, by definition, maximal

profit for, respectively, (po, wo) and (p̂, ŵ) . The right-hand side is profit realized from
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producing the profit maximizing bundle for prices (p̂, ŵ) and (po, wo), respectively, when

(po, wo) and (p̂, ŵ) prevail. Adding the inequalities and collecting terms gives:

(po − p̂) (y∗ (po, wo)− y∗ (p̂, ŵ))− (wo − ŵ) (x∗ (po, wo)− x∗ (p̂, ŵ)) ≥ 0. (3)

Expression (3) generalizes results obtained for cost-minimizing demands and revenue-

maximizing supplies.9 If p̂ = po expression (3) implies

(wo − ŵ) (x∗ (po, wo)− x∗ (po, ŵ)) ≤ 0.

Profit maximizing input demands tend to vary inversely with input price changes. Allowing

only one input price, say for input k, to change gives

(wok − ŵk) (x∗k (po, wo)− x∗k (po, ŵ)) ≤ 0.

Profit maximizing input demands are nonincreasing functions of their own input prices.

Input demand functions, when portrayed in the (xk, wk) plane, have a nonpositive slope.

There are no “Giffen” profit-maximizing input demands.

Exactly parallel arguments holding input prices constant establish that

(po − p̂) (y∗ (po, wo)− y∗ (p̂, wo)) ≥ 0,

and

(pom − p̂m) (y∗m (po, wo)− y∗m (p̂, wo)) ≥ 0.

Profit maximizing supply curves are nondecreasing functions of their own output prices;

supply curves are upward sloping.

9Following an argument established in footnote 5 of Lecture 6 and continued in footnote 5 of Lecture 7,

we can show that (3) is a special case of the more general cyclical monotonicity result for profit-maximizing

supplies and input demands:

p1
(
y∗
(
p1, w1

)
− y∗

(
p2, w2

))
+...+ pK

(
y∗
(
pK , wK

)
− y∗

(
p1, w1

))
−w1

(
x∗
(
p1, w1

)
− x∗

(
p2, w2

))
−...− wK

(
x∗
(
pK , wK

)
− x∗

(
p1, w1

))
≥ 0,

which together with zero homogeneity exhaustively characterizes profit maximizing supply and input demand

behavior.
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Two-stage Profit Maximization

Many introductory treatments of profit maximizing behavior limit themselves to the single-

output case and postulate the existence of a production function and a cost function. For

the production function, f (x), the profit maximization problem is posed as maximizing the

difference between the nonlinear function of inputs, pf (x), and the linear function, wx. For

the cost function, c (w, y), the equivalent problem is to maximize the difference between

the linear function of outputs, py, and the nonlinear cost function, c (w, y). These different

phrasings of the producer’s problem are special cases of the different versions of the two-stage

formulation of the profit maximization problem developed in Lecture 5, to which we now

turn attention.

First, we clarify terminology. A function, g (x), is linear in x if

g (x) =
N∑
n=1

anxn,

where (a1, a2, ..., aN) are constants. A function, g (x), is affine in x if

g (x) = c+
N∑
n=1

anxn, (4)

where c and (a1, a2, ..., aN) are constants. Setting c = 0 shows that a linear function is a

special case of an affine function. When depicted in the (x, y) plane, both a linear function

and an affine function have graphs that are straight lines. The graphs of linear functions go

through the origin; affine functions can have (positive or negative) intercepts on the vertical

axis.

The Profit Function from the Revenue Function

The profit maximization problem framed as

π (p, w) ≡ max
x
{R (p, x)− wx} ,

is illustrated in Figure 5. There the line wx depicts input cost as a linear function of x

with a slope of w > 0, and R (p, x) depicts maximal revenue as a function of x.10 Both are

10We depict R (p, x) for a canonical technology. That’s done for visual familiarity. It is not essential to

the argument.
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Figure 5: Profit and Revenue

0
x

$
𝑹(𝒑, 𝒙)

𝒘𝒙

Copyright © 2024 Robert G. Chambers



denominated in money units, and profit for each input level is the vertical difference between

the revenue curve and the cost line. The problem is to find where that vertical distance is

the largest.

We can view the problem from a different perspective by performing the indicated sub-

traction for each x and then graphing the result in (x, $) space. Figure 6 illustrates. The

Figure 6: Profit as Function of Input
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optimal input demand is at x∗ (p, w) that is at the top of the hill-shaped figure. Figures 5

and 6 illustrate a “nice” case where the optimal solution is easy to find. But regardless of

how “nice” the case, the principle is the same. One seeks a point where either increasing or

decreasing input use reduces profit.
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To show how we solve this problem, we note that x∗ (p, w) must satisfy

R (p, x∗ (p, w))− wx∗ (p, w) ≥ R (p, x)− wx

for all x. In words, if x∗ (p, w) is profit maximizing it must generate more profit than any

other x. This simply repeats the definition of profit maximizing. Adding wx to both sides

of this inequality gives

R (p, x∗ (p, w)) + w (x− x∗ (p, w)) ≥ R (p, x) (5)

for all x as the condition that the profit-maximizing choice of x∗ (p, w) must satisfy.

Expression (5) says that the affine function of x,

R (p, x∗ (p, w)) + w (x− x∗ (p, w)) = R (p, x∗ (p, w))− wx∗ (p, w) + wx (6)

is always greater than or equal R (p, x). (Here the analogue of c in expression (4) is

R (p, x ∗ (p, w)) − wx∗ (p, w) ≡ π (p, w) that does not depend upon x.) Because the graph

of an affine function in (x, $) space is a line (hyperplane), expression (5) requires that line

(hyperplane) to be an upper bound for the graph of R (p, x) for all x. That means that the

graph of R (p, x) must be contained in the half space below the line (hyperplane). By con-

struction, however, the affine function and R (p, x) share a common value at x = x∗ (p, w).

Together these facts imply that the affine function must be tangent to the graph of R (p, x)

from above at x∗ (p, w).11 Because the slope (normal) of the affine function is given by w, the

tangency condition translates into economic terms as requiring that the marginal revenue

from x be equated to w. Figure 7 illustrates.

Equating the marginal revenue for an input to its price is the standard economic rule-of-

thumb for finding the profit maximizing x. But it’s only part of the story. The other part

is that the tangency must be from above so that the graph of R (p, x) must lie everywhere

below that of the affine function in (6). Figure 8 illustrates a situation where the tangency

11If we rewrite (5) as

w (x− x∗ (p, w)) ≥ R (p, x)−R (p, x∗ (p, w)) ,

and compare it to expression (1) in Lecture 6 (see also the associated footnote), we can recognize this

condition as requiring that w be a supergradient for R (p, x) at x∗ (p, w).
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Figure 7: Profit Maximizing Input Demand
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condition is satisfied at three points. One is profit maximizing, but two (labelled A and B)

are not. (See the dashed line segments with slope w.) Moreover, it’s clear from inspection

that there are input levels to the right and left of the input associated with A that involve

a higher profit than at A. For small enough changes, the same is not true for B.

Point A is an example of what is referred to as a local minimum for the difference

between revenue and cost. It’s precisely what we’re trying to avoid. Nevertheless it satisfies

the tangency condition. B is an example of a local maximum. It’s better than points close to

it, but it’s not the best. And the best is what we’re looking for. Condition (5) characterizes

it. Equating marginal revenue to w does not.12

Mathematicians use the concepts of “necessary” conditions and “sufficient” conditions

in these type of discussions. Statement B is called a “necessary” condition for statement A

to be true if it can be phrased as follows: If statment A holds then B must be true. Thus,

B being a necessary condition for A does not exclude it from holding when A is not true.

Instead it only ensures that it must hold when A is true. Statement B is called a “sufficient”

condition for A to hold if it can be phrased as follows: If statement B holds then A must be

true. In other words, B guarantees that A holds.

So using this terminology, “tangency” is a necessary, but not sufficient, condition because

a tangency can occur even if profit is not maximized. A tangency condition is of interest

because it always applies at solutions. But because it can apply elsewhere (for example, at

local minima), it’s not enough.

Condition (5), on the other hand, is necessary and sufficient for the proft maximization

problem. We show this using the definitions. First, assume that the profit maximization

problem has been solved; we have identified x∗ (p, w). Then by the definition of a maximum

R (p, x∗ (p, w))− wx∗ (p, w) = max
x
{R (p, x)− wx}

≥ R (p, x)− wx

for all x. This, however, implies that (5) holds verifying that it is necessary for x∗ (p, w) to

be a maximum. To establish that condition (5) is sufficient, assume that it holds for some

12For those with a calculus background, if you smoothed out the kinks, all three satisfy the first order

condition for a maximum. B also satisfies the second-order condition, but remains nonoptimal.
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Figure 8: Tangency But Not Maximizing

0
x

$

𝑹(𝒑, 𝒙)
𝒘𝒙

𝝅(𝒑,𝒘)

𝝅 𝒑,𝒘 + 𝒘𝒙

A

B

Copyright © 2024 Robert G. Chambers



x̂, then R (p, x̂) − wx̂ = π (p, w) by the definition of a maximum, establishing sufficiency.13

A mathematical short hand for saying that B is necessary and sufficient for A is to say that

A occurs if and only if B is true, or A⇔ B.

The solution to this version of profit maximization problem is the same as the solution

to the profit maximization problem posed in terms of T . But in this version, we only solve

for x∗ (p, w). Optimal revenue is obtained by evaluating the revenue function at x∗ (p, w),

R (p, x∗ (p, w)). The profit maximizing supplies, y∗ (p, w), therefore, equal the revenue max-

imizing supplies derived in Chapter 7, y (p, x), evaluated at x = x∗ (p, w). That is:

y∗ (p, w) = y (p, x∗ (p, w)) . (7)

Expression (7) opens the door to a deeper analysis of supply response. To illustrate, we

examine how supply responds to prices changing from (po, wo) to (p′, w′). By (7)

y∗ (p′, w′)− y∗ (po, wo) = y (p′, x∗ (p′, w′))− y (po, x∗ (po, wo)) .

Now add zero in the form of y (p′, x∗ (po, wo))− y (p′, x∗ (po, wo)) to get

y∗ (p′, w′)− y∗ (po, wo) = y (p′, x∗ (po, wo))− y (po, x∗ (po, wo))

+ y (p′, x∗ (p′, w′))− y (p′, x∗ (po, wo))

Supply adjustments to changing prices break into two components. One, y (p′, x∗ (po, wo))−

y (po, x∗ (po, wo)), measures how revenue maximizing supply adjusts to changing output prices

from po to p′ holding input use at x∗ (po, wo), the original profit maximizing input demand.

It is called the substitution effect. Figure 9 illustrates. (Exercise 8 asks you to analyze an

alternative way of decomposing this adjustment.)

The second component, y (p′, x∗ (p′, w′)) − y (p′, x∗ (po, wo)), measures the supply ad-

justment caused by the profit maximizing change in input demand. The movement from

y (p′, x∗ (po, wo)) on Ȳ (x∗ (po, wo)) to y (p′, x∗ (p′, w′)) on Ȳ (x∗ (p′, w′)) illustrates. It is called

the expansion effect because it describes movement across output sets,

The ability to decompose supply adjustments into separate components enhances our

ability to parse the causes of observed economic responses. For example, the substitution

13As a technical matter, we must verify that a maximum actually exists, but this can always be ensured

by making an appropriate assumption.
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Figure 9: Output Substitution and Expansion
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effect measures revenue maximizing supply response to output price changes. Its behavior

is characterized by R (p, x)’s properties in p. Economists can predict that behavior. The

expansion effect depends on Y (x) and how it adjusts to changes in x. Thus, it is less

predictable. The transformation curves in Figure 9 are drawn for a canonical technology,

but real-world technologies may not be so orderly.

The Profit Function from the Cost Function

This version of the profit maximization problem is stated

π (p, w) ≡ max
y
{py − c (w, y)} .

Figure 10 illustrates the problem as finding the output that gives the largest vertical dif-

ference between the ray py with slope p, which depicts revenue, and the graph of the cost

function, c (w, y).14 If one does the subtraction in {·} and graphs the result in the (y, $)

plane, the result (not drawn) mirrors Figure 6. The difference is that the horizontal axis

now measures y and not x.

Because y∗ (p, w) is profit maximizing for (p, w), it satisfies

py∗ (p, w)− c (w, y∗ (p, w)) ≥ py − c (w, y) ,

for all y. Adding c (w, y) to and subtracting py∗ (p, w)− c (w, y∗ (p, w)) from both sides gives

c (w, y) ≥ py − [py∗ (p, w)− c (w, y∗ (p, w))] (8)

for all y as the necessary and sufficient condition for profit maximization.

The minimal cost of producing the output, y, must be greater than or equal to the affine

function of y,

py − [py∗ (p, w)− c (w, y∗ (p, w))] , (9)

for all y and equal it at y = y∗ (p, w). Here the constant of the affine function is

− [py∗ (p, w)− c (w, y∗ (p, w))] = −π (p, w) .

14The cost function in Figure 10 is drawn for a canonical technology. This is not essential to the analysis.
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Figure 10: Profit Function from Cost Function
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Thus, the graph of the cost function in (y, $) space must be contained in the half space

above the graph of this affine function and the two must touch at the profit maximizing y,

y∗ (p, w). 15 Figure 11 illustrates the tangency for a canonical technology.

Figure 11: Profit Maximizing Supply
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The slope of the cost function is marginal cost, and the slope (normal) of the affine

function in (9) is p. Thus, the familiar economic rule-of-thumb: Profit maximizing supply

is determined by the producer equating price to marginal cost. While that’s true, more is

required. This tangency must be from below, and the graph of c (w, y) must lie everywhere

above the affine function (9). (Exercise 5 asks you to illustrate a cost structure for which

equating price to marginal cost does not ensure a profit maximizing output choice.)

15Alternatively, p must be a subgradient of c (w, y) at (y∗ (p, w) , c (w, y∗ (p, w))).
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Because producers choose their profit-maximizing inputs to minimize the cost of produc-

ing their profit-maximizing output supplies:

x∗ (p, w) = x (w, y∗ (p, w)) ,

profit-maximizing input demands equal cost-minimizing demands evaluated at the profit-

maximizing supply. Therefore,

x∗ (po, wo)− x∗ (p, w) = x (wo, y∗ (po, wo))− x (w, y∗ (p, w)) .

Adding zero in the form of x (wo, y∗ (p, w))− x (wo, y∗ (p, w)) gives

x∗ (po, wo)− x∗ (p, w) = x (wo, y∗ (p, w))− x (w, y∗ (p, w))

+ x (wo, y∗ (po, wo))− x (wo, y∗ (p, w)) .

Adjustments in input demand, therefore, break into two components. The first, the

substitution effect,

x (wo, y∗ (p, w))− x (w, y∗ (p, w)) ,

captures movement along the isoquant for y∗ (p, w) made by a cost minimizing producer in

response to input prices changing from w to wo. The second, the expansion effect,

x (wo, y∗ (po, wo))− x (wo, y∗ (p, w)) ,

captures input adjustments across isoquants induced by supply responding to (p, w) change.16

16Readers familiar with consumer demand theory will recognize that the substitution and expansion effects

discussed here have parallels in the substitution and income effects. One difference is that the expansion

effect can never result in a profit-maximizing input demand curve sloping upward. There are no Giffen

inputs.
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Exercises

1. For the single-input, single-output case, the slope of an isoprofit line is determined by the

input-output price ratio, w
p
. For the single-input, single-output case with constant returns

(as in Figure 1), draw a family of isoprofit lines for which maximal profit is zero.

2. Figure 4 depicts the “do-nothing” and best-response case for a profit-maximizing producer

facing an input-price change. Develop the analogous figure and discussion for an output-price

change.

3. Figure 4 illustrates Hotelling’s Lemma for input prices. Develop the analogous represen-

tation in output-price space.

4. Using Hotelling’s Lemma construct a geometric explanation of why convexity of π (p, w)

implies optimal supplies are upward sloping in their own prices and why input demands are

downward sloping in their own prices.

5. For the revenue function depicted in Figure 8 derive the profit-maximizing input demand

as w varies over 0 < w <∞. Illustrate it in (x,w) space.

6. Illustrate and explain the following decomposition of output response to a price change:

y∗ (p′, w′)− y∗ (po, wo) = y (po, x∗ (p′, w′))− y (po, x∗ (po, wo))

+ y (p′, x∗ (p′, w′))− y (po, x∗ (p′, w′))

7. Illustrate a situation where equating price to marginal cost does not ensure a profit

maximizing output choice.

8. Illustrate and explain the following decomposition of input response to an input price

change:

x∗ (po, wo)− x∗ (p, w) = x (w, y∗ (po, wo))− x (w, y∗ (p, w))

+ x (wo, y∗ (po, wo))− x (w, y∗ (po, wo)) .
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Lecture Introduction

We learned in Lecture 8 that the only technical restriction required to develop the properties

of the profit function, π (p, w), is that T be nonempty. Despite that, economists routinely

model the technology as taking the canonical form. The reason is that the existence of a

positively homogeneous and convex profit function, π (p, w), implies that a “dual technology”,

T̄ , that satisfies nonemptiness, free disposability of inputs, free disposability of outputs, and

convexity must exist. Moreover,

π (p, w) = max
x,y

{
py − wx : (x, y) ∈ T̄

}
.

Furthermore, if the decisionmaker’s opportunity cost is zero and prices, (p, w), exist for which

maximal profit is zero, T̄ is a canonical technology. Thus, regardless of the true structure of

T , its profit function must be consistent with a canonical technology.

Economists refer to this result as the profit function, π (p, w), being “dual” to a canonical

technology, T̄ . The result’s origin is that expressions defined by multiplying prices times

quantities define two distinct linear forms. For example, when we write1

π =
M∑
m=1

pmym −
N∑
n=1

wnxn

profit, π, is the dependent variable, but both of the following statements are true:

• A: Profit is a linear function of the independent variables, quantities (y, x), with normal

given by prices (p,−w) .

• B: Profit is a linear function of the independent variables, prices (p, w, ), with normal

given by quantities (y,−x) .

Statement B is formed from A by switching the roles of quantities and prices in statement A.

It is is said to be dual to A. By the same token, A is dual to B. So profit is interpretable as a

linear function of quantities with prices providing the relevant slopes or as a linear function

of prices with quantities providing the relevant slopes. What’s true for profit is also true for

1The expression
∑M

m=1 pmym −
∑N

n=1 wnxn is an example of what mathematicians also call a bilinear

form.
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cost and revenue. Each is bilinear in the sense that is intepretable either as a linear function

of quantities or as a linear function of prices.2

Duality is a principle in both mathematics and logic. Its exact definition varies. But a

common one is that a duality translates one true statement into another true statement by

exchanging two words or concepts. A and B above illustrate. By convention, economists

refer to relationships taking quantities as independent variables primal and ones with prices

as independent variables dual.

The “duality” between π (p, w) and T̄ ensures that, regardless of T ’s true nature, economists

studying price-taking profit maximizers lose no generality by modeling it “as if” it were

canonical. This lecture proceeds as follows. We first give an overview of the intuition. Next,

we develop the properties of the “dual technology” and examine its relationship to the “true”

technology, T . Then we study different manifestations of this duality using optimization

principles. The Lecture concludes with some general remarks on dual structures.

The Dual Technology, T̄ , Defined

Profit maximizing input demands and supplies, (x∗ (p, w) , y∗ (p, w)), must be feasible,

(x∗ (p, w) , y∗ (p, w)) ∈ T,

and generate more profit than any other feasible input-output bundle,

py∗ (p, w)− wx∗ (p, w) ≥ py − wx

for all (x, y) ∈ T and all prices (w, p). Substituting the definition of the profit function,

π (p, w), into the left-hand side of the inequality gives

π (p, w) ≥ py − wx (1)

for all (x, y) ∈ T as a restriction on feasible input-output bundles.

2*The two-dimensional real coordinate plane and its N-dimensional extension are special cases of what

mathematicians refer to as a vector space. For an arbitrary vector space, X, its dual space, denoted X∗, is the

space of linear functions over X. For both the two-dimensional real coordinate plane and its N-dimensional

extension, its dual space is the space itself.
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In the single-output case, expression (1) can be rewritten as

y ≤ π (p, w)

p
+
w

p
x

for all (x, y) ∈ T. This inequality requires that any (x, y) belonging to T must lie on or below

the isoprofit line (hyperplane) defined by maximal profit, π (p, w),

P̄ (π (p, w) , p, w) = {(x, y) : π (p, w) = py − wx} ,

that Figure 1 illustrates as the line segment with vertical intercept π(p,w)
p

. Because π (p, w)

represents the maximal profit available from T given (p, w), T cannot contain any input-

output pairs lying above the line segment. Expression (1), however, holds for all possible

Figure 1: Isoprofit Line for π (p, w)

x

y

0

𝝅(𝒑,𝒘)
𝒑

'𝓟(𝝅 𝒑,𝒘 , 𝒑,𝒘)

T must be in this half space

input and output prices. Therefore, if we keep p constant (make it the numeraire), and vary
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the input price over, say, w2 > w1 > w0, the same logic implies that T must fall below each

of the resulting isoprofit lines. Because T must lie below each pf these isoprofit lines, it must

fall in the intersection of the half spaces below them. That is,

T ⊂ P− (π (p, wo) , p, wo) ∩ P−
(
π
(
p, w1

)
, p, w1

)
∩ P−

(
π
(
p, w2

)
, p, w2

)
.

Figure 2 depicts this intersection as the (x, y) pairs lying on or below the piecewise linear

contour
π(p,w2)

p
ABC.

Figure 2: Constructing T̄
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B

C

𝑤! < 𝑤"< 𝑤#

T must be here

Figure 2 is drawn for three input price levels. Letting w vary between (0,∞), however,

partitions off all the half spaces in which T must fall. (Because only real prices matter,

letting w vary over that range is the same as letting the real price w
p
, which determines the
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slope of isoprofit lines, range over (0,∞)). These arguments suggest the following theorem.

(The theorem is true regardless of the dimension of x or y):

Theorem 1. (Fundamental Duality Theorem) T ⊂ T̄ where

T̄ ≡ {(x, y) : py ≤ π (p, w) + wx for all (p, w)}

= ∩p,w {(x, y) : py ≤ π (p, w) + wx} .

Theorem 1 identifies the set of inputs and outputs, T̄ , that we call the “dual technology”.

We prove it using a proof by contradiction: Suppose that, contrary to Theorem 1, a technically

feasible input-output bundle, (x, y) ∈ T , exists that does not belong to the dual technology,

(x, y) /∈ T̄ . Because it does not fall in T̄ , at least one (p, w) must exist for which py − wx >

π (p, w). This inequality requires that a technicaly feasible (x, y) exists that yields a higher

profit than maximal available profit, π (p, w), which gives the desired contradiction. Hence,

Theorem 1 must be true.

The intuition is that knowledge of the profit function can be used to “reverse-engineer”

the profit maximization problem to isolate a region of input-output bundles in which the

technology must lie. The search for π (p, w) assumes that the producer “knows” T and wants

to find the highest possible isoprofit line (hyperplane) touching it. On the other hand, in

constructing T̄ , we use knowledge of π (p, w) and (p, w) to find the slopes and intercepts of

the isoprofit lines (hyperplanes) under which T must fall.

Properties of the Dual Technology, T̄

The area below the piece-wise linear
π(p,w2)

p
ABC in Figure 2 is nonempty, satisfies free

disposability of inputs and outputs (FDI and FDO), and is a convex set. We first show that

these properties hold in general. Then we discuss conditions that ensure T̄ satisfies NFL and

NFC.

To verify that T̄ satisfies FDI, we must show that

x′ ≥ x for (x, y) ∈ T̄ ⇒ (x′, y) ∈ T̄ .

Let (x, y) ∈ T̄ so that py − wx ≤ π (p, w) for all (p, w). Taking x′ ≥ x shows that

py − wx′ ≤ py − wx ≤ π (p, w) for all (p, w) ,
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which ensures that (x′, y) ∈ T̄ . For T̄ to satisfy FDO, it must be true that if (x, y) ∈ T̄ then

(x, y′) ∈ T̄ for y′ ≤ y. Let y′ ≤ y for (x, y) ∈ T̄ so that py − wx ≤ π (p, w) for all (p, w).

Then we must have

py′ − wx ≤ py − wx ≤ π (p, w) for all (p, w) ,

which ensures (x, y′) ∈ T̄ .3

To show that T̄ is convex, we must show that if (xo, yo) ∈ T̄ and (x∗, y∗) ∈ T̄ , then any

weighted average of (xo, yo) and (x∗, y∗) also belongs to T̄ . That is, we need to prove that

(xo, yo) ∈ T̄ and (x∗, y∗) ∈ T̄

⇓

p (λyo + (1− λ) y∗)− w (λxo + (1− λ)xo) ≤ π (p, w) for all (p, w) ,

for λ ∈ (0, 1). Because (xo, yo) ∈ T̄ and (x∗, y∗) ∈ T̄ ,

pyo − wxo ≤ π (p, w) for all (p, w)

py∗ − wx∗ ≤ π (p, w) for all (p, w)

Multiply both sides of the first inequality by λ > 0, the second by (1− λ) > 0, and add the

results to get

p (λyo + (1− λ) y∗) − w (λxo + (1− λ)xo) ≤ π (p, w) for all (p, w) ,

which is what we needed to show.

That leaves no free lunch (NFL) and no fixed costs (NFC). Here, we assume that the

decisionmaker’s opportunity cost is 0 and that a set of prices exist for which π (p, w) = 0. If

NFL is violated there exists an (0, y) ∈ T with y ≥ 0 and y 6= 0. That input-output bundle

generates a profit of py − w0 > 0, which cannot satisfy

py − wx ≤ π (p, w) for all (p, w)

if a (p, w) exists such that π (p, w) = 0.4 Hence, T̄ is consistent with NFL.

3For both FDI and FDO recall that input and output prices are assumed positive.
4Again recall that all output prices are strictly positive.
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If the decisionmaker’s opportunity cost is zero, the decisionmaker will not produce at

prices for which π (p, w) < 0. Thus, observed profit for those prices is zero but never

negative, and

0 = p0− w0 ≤ π (p, w) for all (p, w) ,

so that (0, 0) ∈ T̄ . T̄ is thus consistent with NFC.

What is the Dual Technology T̄ ?

If the decisionmaker’s opportunity cost is 0, and a set of prices exist for which π (p, w) = 0,

the dual technology, T̄ , is canonical. We know, however, that a well-behaved profit function,

π (p, w), exists even if the technology, T , looks like Figure 4 in Lecture 5. Therefore, T̄ , in

general, is not the same set as T . Nonetheless,

π̄ (p, w) ≡ max
x,y

{
py − wx : (x, y) ∈ T̄

}
satisfies

π̄ (p, w) = π (p, w)

for all (p, w). Although T̄ and T can differ, they have the same profit function.

To help explain, Figure 3 reproduces Figure 3 from Lecture 8. Recall that T there consists

of all (x, y) on or below the curve AY . It does not satisfy no fixed costs and, therefore, is

not canonical. For the illustrated prices, maximal profit, π (p, w), for T is negative, which is

illustrated by its isoprofit line having a negative intercept. A decisionmaker facing this T and

a zero opportunity cost foregoes production at these prices in favor of alternative employment

(see Lecture 8). Because the decisionmaker does not act as a producer, the input-output

bundle at these prices is zero and not (x∗ (p, w) , y∗ (p, w)). By analogy, any real price w
p

for

an isoprofit line that supports T from above but that has a negative intercept on the vertical

axis leads the decisionmaker to forego production. Positive production is weakly preferred to

the opportunity cost when the real price of the input falls to the level w̄
p

depicted in Figure

4 as the slope of P̄ (0, p, w̄). For that real input price, the profit maximizing input-output

bundle in T , labelled as point Ā, produces a zero profit. The decisionmaker is indifferent

between being a producer and alternative employment.
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Figure 3: No Fixed Costs Violated
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Figure 4: Observed Profit
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Real input prices lower than w̄
p
, whose isoprofit lines are “flatter” than P̄ (0, p, w̄), will

support positive production of output with a positive profit. As the real price of the in-

put falls, the producer moves along the boundary of T from Ā towards Y . Therefore, if

the technology is the area on or below the curve AY in Figure 4, a decisionmaker with

zero opportunity cost never produces along AĀ because that involves negative profit. The

decisionmaker is better off not being a producer for those prices.

Now let’s compare that behavior with that of a decisionmaker who faces a technology

given by the area on or below 0ĀY in Figure 4. (That is, the graph of the production function

for this technology would be the line segment 0Ā and then ĀY afterwards.) For real prices

of the input higher than w̄
p
, whose isoprofit lines have “steeper” slope than P̄ (0, p, w̄), profit

maximization occurs at (0, 0). For real input prices lower than w̄
p
, profit maximization occurs

along the arc ĀY . The production pattern is the same as that for a profit maximizer who

faces T in Figure 3 and has an opportunity cost of 0. The area on or below 0ĀY is the T̄

that would be constructed if the technology were that in Figure 3. It contains T as a subset

and gives the same profit function.

Figure 5 offers another perspective. There T is everything on or below the curve 0Y .

This is the variable returns technology introduced in Figure 7 of Lecture 3. For real input

prices higher than w̄
p
, which is depicted as the slope of the isoprofit line P̄ (0, p, w̄), the profit

maximizing solution is (0, 0).

If, however, you relied on the rule-of-thumb of finding a tangency between the isoprofit

line and the boundary of T to determine the profit maximizing point, you might think

otherwise. Isoprofit lines can be tangent from above to the boundary of T for real prices

higher than w̄
p

in the region BĀ. However, T is not fully contained in the half spaces below

such isoprofit lines. Thus, these isoprofit lines fall below the one passing through (0, 0).

Tangencies can also can occur along 0B for real input prices lower than w̄
p
. But these will

occur from below. Drawing their isoprofit lines shows that higher isoprofit lines can be

attained in the region ĀY , while staying in T .

If a decisionmaker faces the technology in Figure 5, profit maximizing production occurs

either at (0, 0) or along its upper frontier in the region ĀY . If you compare the profit levels

for a decisionmaker facing that technology with one facing a technology given by everything
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Figure 5: Nonconvex Technology
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on or below 0ĀY , you will find that they are same. In this case, T̄ corresponds to everything

below 0ĀY . Again T ⊂ T̄ and gives the same profit function.

The phenomena captured in Figures 3 through 5 is general. T̄ does not give the technol-

ogy. Instead it gives the smallest possible set in input-output space that satisfies: nonempti-

ness, FDI, FDO, convexity, NFC, NFL and that contains the true T . Moreover, it has

the same maximal profit as T for all prices (p, w). Figures 4 and 5 illustrate why. Profit

maximizing decisionmakers who have an opportunity cost of zero never operate in regions

of T that are not consistent with a canonical technology. It’s not that such regions never

exist. To the contrary, we have recognized since Lecture 2 that they can. But profit max-

imizing decisionmakers avoid them in favor of regions that are consistent with a canonical

technology.5

The importance of this result is hard to overestimate. It carries immense analytic advan-

tages. First, it confirms that the competitive profit-maximizing choices for T̄ will correspond

to those for T . Therefore, in studying the behavior of competitive profit maximizing pro-

ducers, we get the same answers, whether we study T̄ or T . Thus, we can analyze producer

behavior “as if” they respond to a canonical technology. The two representations are obser-

vationally equivalent for competitive profit maximizers. Second, it ensures that no generality

is lost in studying profit maximizing producer behavior by first specifying a well-behaved

profit function. If the π (p, w) is appropriately specified, there must exist a corresponding

canonical T̄ that encapsulates all the relevant economic information about the true technol-

ogy, T , regardless of the underlying properties of T .

Other Manifestations of Duality

Because T̄ satisfies satisfies the properties of a canonical technology, we can use it to develop

both a cost function and a revenue function. That cost function would be nondecreasing

and convex in outputs, and that revenue function would be nondecreasing and concave in

inputs.

5T̄ is called the free-disposal convex hull of T meaning that it is the smallest set consistent with the

properties of a canonical technology that contains T as a subset.
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Instead of pursuing this approach, we investigate a cost function that is derived from the

profit function as

c̄ (w, y) ≡ max
p
{py − π (p, w)} (2)

and a revenue function derived from the profit function as

R̄ (p, x) ≡ min
w
{wx+ π (p, w)} (3)

that we refer to, respectively, as the dual cost function and the dual revenue function. Our

focus in the dual cost function discussion is on it as a function of outputs, y, and the focus

in the dual revenue discussion is on it as a function of inputs, x. Exercises 5 and 6 at the

end of this lecture ask you to show that c̄ (w, y) is positively homogeneous and concave as

a function of w and that R̄ (p, x) is positively homogeneous and convex as a function of p.

Thus, the “dual” structures satisfy the same properties in prices as the ones derived directly

from T .

The Dual Cost Function, c̄ (w, y)

Solving the Dual Cost Problem

The definition of the profit function, π (p, w), requires that

π (p, w) ≥ py − c (w, y) (4)

for all (p, y, w). A tiny bit of algebra applied to (4) gives

c (w, y) ≥ py − π (p, w) ,

for all (p, y, w) as an immediate consequence. The difference between revenue from y and

maximal profit, π (p, w), is always less than or equal to the minimal cost of producing y.

That is, the difference between revenue from y and maximal profit, π (p, w) provides a lower

bound for the minimal cost of producing y. This holds for all (p, y, w). And, in particular, it

holds when keeping y and w fixed, we choose p to maximize the difference between revenue

from y and π (p, w). Thus,

c (w, y) ≥ max
p
{py − π (p, w)}

≡ c̄ (w, y)
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for all (w, y). The dual cost function, c̄ (w, y), is a lower bound to c (w, y). On the other

hand, if y equals y∗ (po, w),

c (w, y∗ (po, w)) = poy∗ (po, w)− π (po, w) .

But that means that po must solve the version of (2) framed as

c̄ (w, y∗ (po, w)) = max
p
{py∗ (po, w)− π (p, w)} ,

which is the dual cost problem for the profit maximizing supply y∗ (po, w) .

Therefore, the dual cost function, c̄ (w, y), is a lower bound for the cost function, c (w, y),

that equals it whenever y is profit maximizing for (p, w). That leaves open the possibility

that c̄ (w, y) > c (w, y) when y is not a profit maximizing vector of output supplies. This

happens because c̄ (w, y) is the minimal cost function for T̄ , not T . (We don’t show this,

but it is true.) The divergence between c̄ (w, y) and c (w, y) reflects the divergence between

T̄ and T .

Figure 6 illustrates the dual cost problem (2). We now seek a p that makes the vertical

difference between the ray from the origin labelled py and the graph of the profit function

π (p, w) as large as possible. Note the similarity to Figure 10 of Lecture 8. The problem

structures are the same even though the problems posed differ. The profit maximization

problem is posed in (primal) quantity space and maximizes profit given (dual) prices. The

dual cost problem is posed in (dual) price space and maximizes the difference between revenue

for given (primal) output and π (p, w) . The expression py is interpreted differently in the

two problems. In Figure 10 of Lecture 8, it is a linear function of y with normal p. Those

roles are reversed in Figure 6. But despite the different intuitive interpretations, the inherent

mathematical structures of both problems are identical. Therefore, we use the same math

techniques to solve problem (2) that we used to solve the profit maximization problem. The

difference is that we now search over p instead of over y.

Denote price vectors that solve the dual cost minimization problem by

p (w, y) ∈ argmax
p
{py − π (p, w)} .

Here, argmaxp {·} is an instruction to choose any price vector that gives the largest possible
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Figure 6: Deriving c̄ (w, y)
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value in the set {·} and, thus, solves problem (2). Any solution6 to the dual cost problem

satisfies

py − π (p, w) ≤ p (w, y) y − π (p (w, y) , w) (5)

for all p with equality for p = p (w, y). Thus, for p (w, y) to solve the dual cost problem, y

must be the normal for the affine function of p,

π (p (w, y) , w) + y (p− p (w, y)) = py − c̄ (w, y) ,

whose graph supports the graph of π (p, w) from below at (p (w, y) , π (p (w, y))). Figure 7

illustrates.7

The definition of the dual cost function, c̄ (w, y) , also requires that

c̄ (w, y∗) ≥ p (w, y) y∗ − π (p (w, y) , w)

for all y∗ and y and

c̄ (w, y) = p (w, y) y − π (p (w, y) , w) .

Subtracting the inequality from the inequality gives

c̄ (w, y∗) ≥ c̄ (w, y) + p (w, y) (y∗ − y) (6)

for all y∗. Any solution to the dual cost minimization problem, p (w, y), must be a normal for

an affine function of y∗ whose graph supports the graph the dual cost function from below

at (y, c̄ (w, y)).8

We summarize expressions (5), (6), and the surrounding discussions in statement C

below.

• C: The solution to the dual cost problem occurs where y forms the normal for a hy-

perplane that supports the profit function from below at (p, π (p, w)), and any solution

to the dual cost problem forms the normal for a hyperplane that supports the graph

of the dual cost function from below at (y, c̄ (w, y)) .

6We say any solution because the problem can have multiple solutions. If that occurs, all the solutions

give the same value of py − π (p, w).
7p (w, y), thus, solves the dual cost problem if and only if y is a subgradient of π (p, w) in p.
8p (w, y) is a subgradient of c̄ (w, y).
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Figure 7: Solution to Dual Cost Problem (Hotelling’s Lemma)
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Switching the roles of “dual cost” and “profit” and y and p in C gives its dual

• D: The solution to the profit problem occurs where p forms the normal for a hyperplane

that supports the dual cost function from below at (y, c̄ (w, y)), and any solution to

the profit problem forms the normal for a hyperplane that supports the graph of the

profit function from below at (p, π (p, w)) .

The first (second) part of D (C) restates the condition developed in Lecture 8 (price equals

marginal cost) that must be satisfied for y to solve

maxy {py − c̄ (w, y)} ,

and the second (first) part of D (C) restates part of Hotelling’s Lemma. Both problem

solutions give the same information.

Dual Cost as a Function of Output

We now show that c̄ (w, y) is nondecreasing (nonnegative marginal cost) and convex in output

(nondecreasing marginal cost), y. Because we obtain the dual cost function by solving

a problem whose form is identical to that of the profit maximization problem but involves

different choice variables (p now instead of y), our method for demonstrating these properties

mirrors that used to establish that π (p, w) is nondecreasing and convex in p.

We first show that y′ ≥ y implies

c̄ (w, y′) ≥ c̄ (w, y) .

To do so, we again deploy a “do nothing” argument. If y′ ≥ y it must be true that

p (w, y) y′ − π (p (w, y) , w) ≥ p (w, y) y − π (p (w, y) , w) .

The left hand side is the result of “doing nothing” to the solution of the dual cost problem

in response to output increasing from y to y′. Because output prices, p (w, y), are positive,

increasing output while holding them constant forces revenue to increase. Because the dual

cost problem is to maximize the difference between revenue and maximal profit, the best

response must dominate the “do nothing” response and cannot increase dual cost.
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For convexity, let

ŷ = λy0 + (1− λ) y1,

for λ ∈ (0, 1) denote a weighted average of two output bundles y0 and y1. To demonstrate

that the dual cost structure is convex in output, we must show that the weighted average

of c̄ (w, y0) and c̄ (w, y1) always is at least as large as the dual cost of ŷ, c̄ (w, ŷ). By the

definition of the dual cost function:

c̄
(
w, y0

)
≥ p (w, ŷ) y0 − π (p (w, ŷ) , w)

c̄
(
w, y1

)
≥ p (w, ŷ) y1 − π (p (w, ŷ) , w)

Multiply the first inequality by λ > 0, the second by (1− λ) > 0, and add the result to

obtain

λc̄
(
w, y0

)
+ (1− λ) c̄

(
w, y1

)
≥ p (w, ŷ)

[
λy0 + (1− λ) y1

]
− π (p (w, ŷ) , w)

= c̄ (w, ŷ)

for λ ∈ (0, 1).

Figure 8 illustrates why c̄ (w, y) and c (w, y) do not coincide. As drawn, the illustrated

cost function initially has decreasing marginal costs and then increasing marginal costs.

If the price of the output is below p̄, the graph of the ray from the origin that depicts

revenue will always lie below the graph of the cost function. That means that profit is

negative for all output levels except zero. The producer is best off, therefore, operating at

the origin, producing nothing, and realizing a cost and profit of zero. For price p̄, the producer

makes zero profit by producing y∗ (p̄, w) and is, therefore, indifferent between producing that

amount and zero. For prices higher than p̄, price can equal marginal cost in the region 0Ā of

the graph of the cost function. But such points fall on lower isoprofit lines than the parallel

tangencies that occur in the region beyond Ā. Thus, a profit maximizer never produces in the

region 0Ā of the cost function. And because c̄ (w, y) is constructed from profit maximizing

solutions via π (p, w), the closest approximation to c (w, y) in that region is the shut-down

solution that would occur if the slope of the cost curve coincided with p̄ between 0 and

y∗ (p̄, w). The graph of c̄ (w, y) in (y, $) space thus follows the line segment 0Ā until y∗ (p̄, w)
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Figure 8: Nonconvex Cost and Profit Maximization
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and the graph of c (w, y) afterwards. And as required, c (w, y) ≥ c̄ (w, y) and both always

involve the same profit.

Dual Revenue from the Profit Function

Solving the Dual Revenue Problem

By the definition of the profit and revenue functions,

π (p, w) ≥ R (p, x)− wx

for all (p, x, w). Some easy algebra gives

π (p, w) + wx ≥ R (p, x)

for all (p, x, w). Because this inequality must hold for all possible values of π (p, w) +wx, it

must hold when w makes it as small as possible. Therefore,

min
w
{π (p, w) + wx} ≥ R (p, x) ,

for all (p, x). Hence,

R̄ (p, x) ≥ R (p, x) ,

for all (p, x) and

R̄ (p, x∗ (p, w)) = R (p, x∗ (p, w)) .

The dual revenue function is an upper bound for the revenue function for T , and the two

revenue functions coincide for profit maximizing input vectors.

We use the same strategy to solve and analyze the dual revenue problem. As a result,

the discussion is more terse. Denote input-price vectors that solve the dual revenue problem

by:

w (p, x) ∈ argmin
w
{π (p, w) + wx} .

Here argminw {·} is an instruction to choose the vector of input prices that gives the smallest

possible value in the set {·}. For given x, any such solution (there can be more than one)

must satisfy:

π (p, w (p, x))− x [w − w (p, x)] ≤ π (p, w) , (7)
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for all w. The interpretation of this condition is, by now, familiar. For an input-price vector

w (p, x) to solve the dual revenue problem, the graph of the affine function of w,

π (p, w (p, x)) + w (p, x)x− xw,

with normal −x must support the graph of π (p, w) from below at (w (p, x) , π (p, w (p, x))).9

Expression (7) is illustrated by Figure 4 from Lecture 8, by taking x∗ and w∗ there to be,

respectively, x and w (p, x). Similarly, taking p∗ = p, w∗ = w (p, x), and x∗ (p∗, w∗) = x in

expression (1) in Lecture 8 gives expression (7), the second half of Hotelling’s Lemma.

By the definition of the dual revenue function:

R̄ (p, x∗) ≤ π (p, w (p, x)) + w (p, x)x∗, and

R̄ (p, x) = π (p, w (p, x)) + w (p, x)x,

for all x∗ and x. Hence,

R̄ (p, x∗) ≤ R̄ (p, x) + w (p, x) (x∗ − x) (8)

for all x∗. Expression (8) requires that the graph of the affine function of x∗

R̄ (p, x) + w (p, x) (x∗ − x)

with normal w (p, x) must support the graph of R̄ (p, x∗) from below at
(
x, R̄ (p, x)

)
.

We summarize (7), expression (8), and the surrounding discussion in statement D.

• E: The solution to the dual revenue problem occurs where −x forms the normal for a

hyperplane that supports the graph of the profit function from below at (w, π (p, w)),

and any solution to the dual revenue problem forms the normal for a hyperplane that

supports the graph of the dual revenue from below at
(
x, R̄ (p, x)

)
.

Switching the roles of “dual revenue” and “profit” and −x and w in C gives its dual

• F: The solution to the profit problem occurs where w forms the normal for a hyperplane

that supports the graph of the dual revenue function from below at
(
x, R̄ (p, x)

)
, and

(minus) any solution to the profit problem forms the normal for a hyperplane that

supports the graph of the profit function from below at (w, π (p, w))

9In words, −x must be a subgradient of π (p, w) in w at the solution.
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The first (second) part of F (E) restates the condition that must be satisfied for an

output vector to be profit maximizing (price equals marginal cost), and the second (first)

part of F (E) restates part of Hotelling’s Lemma.

Dual Revenue as a Function of Input

It remains to show that the dual revenue function, R̄ (p, x), is nondecreasing and concave

in the input vector x. The method used is analogous to that used to show that the cost

function is nondecreasing and concave in w. That R̄ (p, x) is nondecreasing in x follows from

another “do nothing” argument. Suppose that in response to the input bundle falling from,

say, x′ to x, nothing is done to the solution of the dual revenue problem for x′. Then

π (p, w (p, x′)) + w (p, x′)x′ ≥ π (p, w (p, x′)) + w (p, x′)x

for x′ ≥ x. Because the best response to the change in x must be no worse than the “do

nothing” response, R̄ (p, x′) ≥ R̄ (p, x) as required.

To demonstrate concavity, let x̂ = λx0 + (1− λ)x1 for λ ∈ (0, 1). By the definition of

the dual revenue function, we must have

R̄
(
p, x0

)
≤ w (p, x̂)x0 + π (p, w (p, x̂)) , and

R̄
(
p, x1

)
≤ w (p, x̂)x1 + π (p, w (p, x̂, )) .

Multiply the first inequality by λ > 0, the second by (1− λ) > 0, and add the results to

obtain

λR̄
(
p, x0

)
+ (1− λ) R̄

(
p, x1

)
≤ w (p, x̂)

(
λx0 + (1− λ)x1

)
+ π (p, w (p, x̂))

= R̄ (p, x̂)

for λ ∈ (0, 1) establishing the desired concavity. If you set p = 1 for the single output case,

the curve 0Y in Figure 5 depicts the revenue function for a nonconvex technology, R (p, x).

In that case, R̄ (p, x) corresponds to 0ĀY .
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A Road Not Taken?

A reasonable reaction to these duality results might be: If one knows that self-interested,

price-taking producers behave as though there exists a canonical technology, why not start

with T̄ instead of T?

One reason is that economists originally conceptualized producers as maximizing the

difference between pf (x) and wx, and then reasoned forward. It was gradually established

that the conditions required for this problem to have well-behaved solutions implied that a

producer’s supply curves slope upward in the output price and that input demands slope

downward in their prices. Until circa 1970, most production analyses took that perspective.

A byproduct of the Second World War was an increased interest in the mathematics of

optimization. In the 1950s and 1960s, that brought new perspectives on and new tools for

studying maximization and minimization problems. The realization of the importance of the

connections between dual optimization problems of the type exemplified by

max
y
{py − c (w, y)}

and

max
p
{py − π (p, w)}

was an important outgrowth. So, for many years, economists just did not understand that

many economic problems could be studied from a dual perspective.

So, history is a partial answer. But more important is the fundamental idea that model

formulation best proceeds by first understanding the basics of the practical problem and then

formulating a tractable analytic model. For many economic problems, that means starting

from a primal perspective. As important as mathematics is to economic analysis, its ultimate

usefulness stems from the extramathematical reasoning10 that the economist attaches to the

abstract mathematical objects.

For example, we’ve learnt that economic behavior consistent with the laws of supply and

demand implies the existence of a mathematical object that we’ve named T̄ and interpreted

as a canonical technology. T̄ ’s existence, however, is a purely mathematical consequence of

10A phrase that I borrowed from a famous decision theorist, the late Peter Fishburn.
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the existence of a positively homogeneous and convex function of variables (p, w) that we’ve

called “prices”. If those objects were, say, different colored marbles, the mathematical object

T̄ would still exist. But its extramathematical interpretation differs. It assumes its peculiar

meaning to us because we framed our model in terms of a set T interpreted as a technology.

In their own way, the duality results confirm Le Tellier’s observation: ...plus nous avançons

dans la connaissance de l’univers, plus il nous apparâıt fondè sur des lois mathèmatiques.11

11For a translation, see Lecture 1.
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Exercises

1.* For an arbitrary w ∈ RN
++ define the half space:

{
x ∈ RN : wx ≥ c (w, y)

}
.

Draw a two-dimensional representation of that half space. Now take another w′ ∈ RN
++,

define the half space it generates as

{
x ∈ RN : w′x ≥ c (w′, y)

}
,

and illustrate it visually on the same figure. Prove that their intersection,

{
x ∈ RN : wx ≥ c (w, y)

}
∩
{
x ∈ RN : w′x ≥ c (w′, y)

}
,

forms a convex set consistent with free disposability of input that contains X (y) as a subset.

Extend this reasoning to show that

X (y) ⊂ {x : wx ≥ c (w, y) for all w}

≡ X̄ (y) ,

the dual input set.

2.* Prove that X̄ (y) defined in Exercise 1 satisfies free disposability of inputs (FDI) and is

a convex set.

3.* Following the reasoning in Exercise 1 to show that

Y (x) ⊂ {y : py ≤ R (p, x) for all p}

≡ Ȳ (x) ,

the dual output set.

4.* Prove that Ȳ (x) satisfies free disposability of output and is a convex set.

5∗. Prove that c̄ (w, y) is positively homogeneous and concave as a function of w.

6∗. Prove that R̄ (p, x) is positively homogeneous and convex as a function of p.
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